
El saber de mis hijos
hará mi grandeza”

UNIVERSIDAD DE SONORA

División de Ciencias Exactas y Naturales

Posgrado en Matemáticas
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Agradezco a los profesores Mart́ın Eduardo Fŕıas y Fernando Verduzco, quienes hace más de catorce
años fueron quienes nos recibieron a mı́ y a otros estudiantes cuando por vez primera, visitábamos
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seminarios del departamento y en un congreso de nivel nacional; y a la profesora Nancy por cuidarnos
y hasta consentirnos cuando ı́bamos a las olimpiadas nacionales. Un afectuoso abrazo para cada uno.

Tengo además mucho que agradecer por el apoyo de los profesores Eduardo Tellechea y Adolfo
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tanto como matemático, como persona y como amigo. Espero poder seguir aprendiendo mucho más
de usted.

El profesor Andrés Pedroza es alguien a quien debo agradecerle bastante el que este proyecto de
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Introduction

This thesis is devoted to the study of the low-degree Poisson cohomology in the semilocal context,
that is, in neighborhoods of symplectic leaves.

The cohomology theory of Poisson manifolds was introduced by Lichnerowicz, together with
the description of Poisson brackets in terms of bivector fields [44]. Indeed, he observed that the
Jacobi identity for a Poisson bracket can be translated to its associated bivector field in terms of
the Schouten-Nijenhuis bracket for multivector fields. On the other hand, by the properties of the
Schouten-Nijenhuis bracket, every bivector field induces a graded derivation of degree 1 on the algebra
of multivector fields, namely, the adjoint operator with respect to this bracket. It turns out that such
operator is a coboundary exactly when the given bivector field is associated with a Poisson bracket.
This gives rise to the Lichnerowicz-Poisson complex, and its cohomology is known as the Poisson
cohomology of the Poisson manifold.

From a geometric perspective, the Poisson cohomology in low degree has important interpretations.
For example, the zeroth Poisson cohomology is isomorphic to the algebra of Casimir functions, being
these functions the ones which are constant along the symplectic leaves of the Poisson manifold. Also,
the first Poisson cohomology is the quotient of the Lie algebra of the infinitesimal automorphisms of
the Poisson manifold by its ideal of Hamiltonian vector fields [44, 74].

On the other hand, the Poisson cohomology is a well-suited algebraic framework to express
obstructions. For example, the unimodularity of an orientable Poisson manifold, which is the existence
of a volume form invariant under every Hamiltonian flow, is controlled by the modular class, which
lies in the first cohomology of the Poisson manifold [83]: the modular class vanishes if and only
if such invariant volume form exists. The modular class is one of the most important Poisson
cohomology classes, and is the first of the so-called characteristic classes [23]. On the other hand,
the second Poisson cohomology is related to obstructions in quantization theory [63], [64, Chapter 6],
and semilocal linearizability [73]. Second and higher-degree Poisson cohomology has applications, for
instance, in deformation theory [21, Subsection 2.1.2].

As a cohomological theory, Poisson cohomology has many desirable properties. For example, there
exists a natural morphism from the de Rham to the Poisson cohomology of the manifold. On the other
hand, the Mayer-Vietoris sequence holds for Poisson cohomology, which allows to reduce the problem of
global computation to smaller open sets. Moreover, the Lichnerowicz-Poisson complex admits a natural
filtration whose associated spectral sequence is convergent to the Poisson cohomology [62, Section 1].
In the case of regular Poisson manifolds, there exists a recursive procedure for its computation, which
was introduced first by Karasev and Vorobiev in the context of symplectic fibrations [74], and then
adapted by Vaisman to any regular Poisson manifold [62, Section 2]. Also, Xu presented a method for
the computation of Poisson cohomology in the regular case by means of symplectic groupoids [84].

In spite of its good properties, the computation of Poisson cohomology for general Poisson
manifolds is not an easy task. In fact, the difficulties for its computation are mainly related to the
singularities of the Poisson manifold. Several approaches have been developed for the computation of
the Poisson cohomology in many particular cases of Poisson manifolds with singularities. For instance,
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2 INTRODUCTION

Conn showed that if the isotropy algebra of a Poisson structure at a vanishing point is semisimple of
compact type, then the Poisson structure is linearizable around that given point and its first Poisson
cohomology group is trivial [12]. On the other hand, based on some classification results of Arnold
[2], Monnier computed the cohomology of 2-dimensional Poisson manifolds around simple singularities
[49]. These results may be interpreted as the computation of germified Poisson cohomology. Global
computations of the cohomology of 3-dimensional linear Poisson structures can be found in works of
Nakanishi [52, 53, 54]. In the context of 2-dimensional Poisson manifolds, a global computation was
done by Radko, who obtained the cohomology of topologically stable Poisson structures on orientable
closed surfaces [56, Section 4]. Furthermore, Lanius computed the Poisson cohomology of the so-called
partitionable log symplectic structures [42], generalizing Radko’s cohomological results.

The purpose of this work is to describe and compute Poisson cohomology in neighborhoods of
symplectic leaves. As is well known, the semilocal model for Poisson manifolds is given by coupling
Poisson structures [77]. Indeed, for each embedded symplectic leaf of a Poisson manifold, there
exists a tubular neighborhood around it in which the Poisson structure is coupling. This means
that the geometry around the symplectic leaf is controlled by some geometric data satisfying certain
compatibility relations which are equivalent to the Jacobi identity of the Poisson structure [77, 78]. In
fact, each coupling Poisson structure on a regular foliated manifold is equivalent to a triple consisting of
a leaf-tangent Poisson structure equipped with an Ehresmann connection with Hamiltonian curvature,
whose Hamiltonian is given by a covariantly constant 2-form vanishing along the leaves of the regular
foliation [65, 77]. Such 2-form parameterizing the Hamiltonian of the curvature is called the coupling
form.

In the semilocal context, the regular foliation which allows to apply the coupling method is provided
by the fibers of a tubular neighborhood around the symplectic leaf [77]. The leaf-tangent (vertical)
Poisson structure defines a locally trivial Poisson bundle [78, Prop. 3.3], and each fiber coincides
with the transverse Poisson structure given by Weinstein Splitting Theorem [82, Theorem 2.1]. An
adequate change of the tubular structure on a neighborhood of the symplectic leaf corresponds to
the action of a group of an special class of diffeomorphisms around the zero section of its normal
bundle. This corresponds to a gauge transformation of the Poisson structure, which allows to describe
the change of the geometric data associated with each tubular structure [78, Sections 2 and 3]. In
particular, the transverse Poisson bundles are isomorphic [78, Theorem 3.2].

Roughly speaking, the coupling method in Poisson geometry provides a geometric splitting
into tangential and transversal components, which in the semilocal context is compatible with the
singularities of the Poisson structure. Indeed, the singularities of a Poisson structure near an embedded
symplectic leaf are encoded in the transverse Poisson bundle over the symplectic leaf. In this sense,
the tangential component of the Poisson structure is regular, while the transversal part is singular.
In the particular case when the symplectic leaf is regular, the tubular neighborhood can be chosen
so that the transverse Poisson structure is trivial. This compatibility between the coupling method
and the singularities of the Poisson structure is one of the key properties for which this method is a
suitable tool for the study of Poisson cohomology in the semilocal context. Furthermore, since the
semilocal model for Poisson manifolds is provided by coupling Poisson structures, we may restrict our
attention in the computation of the Poisson cohomology of coupling Poisson structures.

A natural problem in semilocal Poisson geometry is to describe and compute the cohomology of
coupling Poisson structures in terms of its associated geometric data. Some preliminary results in this
direction were obtained by Itskov, Karasev, and Vorobiev in [75] and [33], where it is found a relation
between the Poisson cohomology around symplectic leaves and the cohomology of some bigraded
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(Z×Z-graded) complex. A further step in the description of the Poisson cohomology in the semilocal
context was given by Crainic and Fernandes, who showed that the Lichnerowicz-Poisson complex of a
coupling Poisson structure on a vector bundle is isomorphic to a bigraded cochain complex [15, Prop.
5.3]. In fact, they observed that the geometric data of a coupling Poisson structure induce differential
operators on some bigraded Poisson algebra of degree (0,−1): the vertical Poisson structure and the
coupling form act via the adjoint of the bracket, and the Ehresmann connection induces the covariant
exterior derivative. It turns out that this operators induce a coboundary if and only if they correspond
to the geometric data of a coupling Poisson structure. In this case, the induced cochain complex is
isomorphic to the Lichnerowicz-Poisson of the coupling structure. Finally, by considering a more
general algebraic framework, Mărcuţ extended this result to the case of coupling Dirac structures on
fibred manifolds [50, Subsection 4.2]. In this setting, the covariant exterior derivative is also presented
as an adjoint operator (see also [16]).

In virtue of the above results, the approach adopted in this work for the description of the Poisson
cohomology in the semilocal context is to compute the cohomology of a certain class of bigraded
cochain complexes. More precisely, we consider a cochain complex (C•, ) with the following property:
the R-module C is endowed with a compatible bigrading C•,• =

⊕
p,q∈Z Cp,q in the sense that the

coboundary operator is the sum of three operators of given bigraded type,

Ck =
⊕
p+q=k

Cp,q, and = 0,1 + 1,0 + 2,−1. (1)

It is important to remark that this class of cochain complexes appear in many different algebraic and
geometric contexts. For instance, a particular case which is very well-studied in the literature is the
double complex (C•,•, = 0,1 + 1,0) (see, for example, [46, Chapter XI, Section 6], [6, Chapter II],
[47, Section 2.4]), which is obtained from our general framework in the case when 2,−1 = 0. Another
example is provided by the de Rham complex of a fibred manifold. In fact, Vaisman observed that
given a regular foliated manifold (M,V), and fixing an Ehresmann connection γ on (M,V), the de
Rham differential has the following bigraded decomposition [61]:

d = dγ0,1 + dγ1,0 + dγ2,−1 .

Here, dγ0,1 is the γ-covariant exterior derivative, dγ1,0 is the foliated exterior derivative, and dγ2,−1 =
− iRγ is the negative of the insertion of the curvature Rγ of γ. These facts were also observed by
Brahic as a particular case of cochain complexes arising in the context of extensions of Lie algebroids
[7, Prop. 3.2], [8, Section 2]. Also, as a particular case of their constructions, Garćıa-Beltrán, Vallejo,
and Vorobiev obtained some Lie algebroids on the tangent bundle whose de Rham complex is of the
type in (1), [26, Section 4]. As a final example, we consider the case of a Poisson foliation (M,F , P ).
For a fixed subbundle normal to the regular foliation F , the Lichnerowicz-Poisson complex of (M,P )
is of the form (Γ(∧•,•TM), P = ( P )1,0 + ( P )2,−1). This can be regarded as a particular case of
our general framework, in which the operator of bigraded type (0, 1) vanishes. It is important to
mention that the recursive procedures presented by Karasev and Vorobiev in [74], and by Vaisman
in [62] for the computation of the cohomology of a regular Poisson manifold, are based on the given
decomposition of the coboundary operator. In some sense, these results on the regular case motivate
the approach and the results presented in this work.

Now we describe how a bigraded cochain complex of the form (1) arises in the context of coupling
structures on foliated manifolds. Consider a regular foliation V on M , and a Poisson structure Π which
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is V-coupling. Let us denote its associated geometric data by (P, γ, σ). This means that (M,V, P )
is a Poisson foliation with Poisson connection γ, and σ is a coupling form, which is a γ-covariantly
constant 2-form, vanishing along the V-leaves, and which is the Hamiltonian of the curvature of γ.
Let us denote by Hγ := ker(γ) the horizontal distribution of γ. Since (P, γ, σ) are associated with the
bivector Π, the coupling form σ is horizontally non-degenerated, in the sense that the image of its flat
mapping σ[ : TM → T ∗M is the whole annihilator bundle of TV, σ[(TM) = Ann(TV). Therefore, we
have an isomorphism from TM = Hγ ⊕ TV to V := Ann(TV)⊕ TV, namely X + Y 7→ −σ[(X)⊕ Y ,
which can be extended to an isomorphism of bigraded exterior algebras [σ : ∧•,•TM → ∧•,•V. It turns
out that under this correspondence, the Lichnerowicz-Poisson complex (Γ(∧•,•TM), Π) is isomorphic
to a bigraded cochain complex, (Γ(∧•,•V), P

0,1 + γ
1,0 + σ

2,−1), where the differential is the sum of

three bigraded operators: the adjoint operator of P , P
0,1; the covariant exterior derivative of γ, γ

1,0;
and the insertion of the differential of the coupling form σ, σ

2,−1. In this sense, the problem of the
computation of the Poisson cohomology of (M,Π) turns into computing the cohomology of a bigraded
cochain complex.

Based on the previous discussion, the structure of this work consists in three main parts: the
computation of the cohomology of general bigraded complexes from an algebraic perspective (Chapter
3), the introduction of new geometric structures in which such algebraic formalism can be applied
(Chapter 4), and the application of the general results to the first cohomology of coupling Poisson and
Dirac structures on fibred and foliated manifolds (Chapters 5 and 6).

The cohomology of a bigraded complex

The most important contribution of this work is to provide a scheme for the computation of Poisson
cohomology in the semilocal context. To this end, we have derived a general procedure which allows to
compute the cohomology of a bigraded complex (C•,•, ) with = 0,1+ 1,0+ 2,−1, as described above.
Here we present the results we have obtained in the cases of first, second, and third cohomology, but
our procedure may be applied to derive similar results in any degree. In particular, we have recovered
the results developed in [70, Chapter 1] for the cohomology of degree 1.

Among our main results, we mention the following.

Theorem (First Cohomology). We have the following short exact sequence

0 // H1(N0, ) // H1(C, ) // ker(ρ1)
B1(C0,•, 0,1)

// 0,

which describe the first cohomology of a bigraded cochain complex (C•,•, ).

This result on the first cohomology of (C, ) is the bottom row of the diagram appearing in Theorem
3.11, and involves the map ρ1 : A1 → H2(N0, ), which is related to the second cohomology of (N0, ).

Theorem (Second Cohomology). The following are short exact sequences which allow to describe the
second cohomology of a bigraded cochain complex (C•,•, ):

0 // Z2(N0, )
B2(C, )∩C2,0

// H2(C, ) // ker(ρ2)
B2

1

// 0,

0 // ker(%2)
B2

1∩C1,1
// ker(ρ2)
B2

1

// Z2
2

B2(C0,•, 0,1)
// 0.
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This result consists of the bottom rows of the diagrams appearing in Theorem 3.13. Moreover, it
involves the maps ρ2 : A2 → H3(N0, ) and %2 : J 2 → H3(N0, ), related to the third cohomology of
(N0, ). Also, the subspace Z2

2 is related to the 3-coboundaries of (N1, ).

Theorem (Third Cohomology). The third cohomology of (C•,•, ) is described by the following short
exact sequences:

0 // Z3(N0, )
B3(C, )∩C3,0

// H3(C, ) // ker(ρ3)
B3

1

// 0,

0 // ker(%3)
B3

1∩C2,1
// ker(ρ3)
B3

1

// Z
3
2

B3
2

// 0,

0 // B
3
2∩C1,2

Z3
2∩C1,2

// Z
3
2

B3
2

// Z3
3

B3(C0,•, 0,1)
// 0.

These short exact sequences are the bottom rows appearing in the diagrams of Theorem 3.15. We
note that this result on the third cohomology of (C•,•, ) involves the maps ρ3 : A3 → H4(N0, ) and
%3 : J 3 → H4(N0, ), related to the fourth cohomology of (N0, ). Also, the subspace Z3

3 is related
to the 4-coboundaries of (N1, ).

Tools and the idea of the proof. The problem on the computation of the cohomology of a bigraded
cochain complex (C•, ) with = 0,1 + 1,0 + 2,−1 is addressed in Chapter 3. First of all, we tried to
apply the spectral sequence technique. In fact, due to the particular decomposition of the coboundary
operator, the filtration F pC :=

⊕
i,j∈Z,i≥p Ci,j induces a first quadrant spectral sequence Ep,qr , which

converges to the cohomology H•(C, ). Since in the context of our applications we deal with cochain
complexes over the field of real numbers, the convergence property implies Hk(C, ) ∼=

⊕
p+q=k E

p,q
∞ .

In this sense, the problem of the computation of Hk(C, ) is just the computation of each Ep,q∞ .
Actually, the standard formula found in the modern literature to compute the spectral sequence of
a graded filtered complex is Ep,qr = Zp,qr

Zp+1,q−1
r−1 +Bp,qr−1

(see, for instance, [47, Theorem 2.6, Proposition

2.11]). However, the application of this formula to the case of our bigraded complex (1) did not produce
something which could be adequately interpreted. Even in the case of the first cohomology, we did
not recovered our previous results presented in [70, Chapter 1]. Fortunately, we were graced to found
in [21, Eq. (2.46)] a different but equivalent formula for the computation of the spectral sequence:

Ep,qr = Zp,qr +F p+1Cp+q
Bp,qr−1+F p+1Cp+q (see also [46, p. 346]). this formula gives something manageable in the case of

bigraded complexes, namely Ep,q∞ =
Zkq ∩Cp,q

Bkq∩Cp,q
. Here, the elements of Zkq are called pre-cocycles, since

are those which can be completed to a k-cocycle, in some sense. Similarly, the elements of Bkq are
called pre-coboundaries. In the case of the first cohomology, this formula coincides with some of the
results in [70, Chapter 1] (see Lemma 5.14 and the discussion below).

As we have explained, the spectral sequence technique applied to a bigraded complex (C•, ) leads
to splitting-type results which allow to compute the Poisson cohomology in the semilocal context.
However, such results are weaker versions of the main results presented above, in the sense that, up to
our knowledge, these splittings are not canonical. This fact is reflected, for instance, in the description
of the modular class of coupling Poisson structures which we present below: the generalized Reeb class
only exists when certain Poisson foliation is unimodular. If the splitting for the first cohomology
were canonical, then such generalized Reeb class would always exist, regardless the unimodularity
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of the Poisson foliation. However, it is unlikely that this occurs, due to the way it is defined. For
this reason, we tried to find a different approach that provides a broader view on the computation
of the cohomology. We have found that, for each k ∈ Z, the R-modules of k-cocycles Zk(C, ),
k-coboundaries Bk(C, ), and k-cohomologies Hk(C, ) can be described by means of k commuting
diagrams with exact rows and columns, given for each q = 0, . . . , k − 1, and p := k − q as follows:

0

��

0

��

0

��
0 // Bkq ∩ Cp,q� _

��

� � // Bkq� _
��

πq+1// Bkq+1� _

��

// 0

0 // Zkq ∩ Cp,q

��

� � // Zkq

��

πq+1// Zkq+1

��

// 0.

0 // Z
k
q ∩Cp,q

Bkq∩Cp,q

��

// Z
k
q

Bkq

��

// Z
k
q+1

Bkq+1

��

// 0

0 0 0

This result is presented in Theorem 3.7. The fact that this family of diagrams describes the
coboundaries, cocycles, and cohomology of degree k readily follows from Zk0 = Zk(C, ), and
Bk0 = Bk(C, ). In particular, the cohomology of degree k is described by means of the bottom row of
each of the k diagrams. In the case of the cohomology in low degree, the module Zk1 can be described
in terms of the kernel of some natural mappings ρk : Ak → Hk+1(N0, ) and %k : J k → Hk+1(N0, ).
Combining this with some other calculations, we obtain an effective description of the cohomology in
low degree. In particular, we get the main results presented above in the cases k = 1, 2, 3.

Generalized coupling structures

Another goal of this work is to enlarge the class of geometric structures for which its associated
cochain complex naturally admits a bigrading of the type (1). As we explained above, there are
many well-known examples of geometric structures with a cochain complexes of this kind. In fact,
we observe that these examples can be presented as part of the following general framework: suppose
that on the total space of a Lie algebroid (E, q, [·, ·]E) we are given a pair of subbundles H,V ⊆ E
such that H ⊕V = E, and Γ(V ) is closed under the bracket [·, ·]E . In this case, the de Rham complex
of the Lie algebroid E, (∧•E∗, ), carries a natural bigrading such that = 0,1 + 1,0 + 2,−1. In
fact, consider the projection map p : E → E such that H = ker(p) and p |V = IdV , and its curvature
Rp ∈ Γ(∧2E∗ ⊗ E). If, for each K ∈ Γ(∧•E∗ ⊗ E), iK is the insertion on Γ(∧•E∗), and LK := [iK , ]
is given by the graded commutator of endomorphisms, then we have:

Theorem (Bigrading on Lie algebroids). The bigraded components of the de Rham differential of
(E, q, [·, ·]E) satisfy

1,0 = LIdE − p +2 iRp , 0,1 = Lp− iRp , 2,−1 = − iRp .

This result is presented in Theorem 4.1, but a detailed proof of it, given in a general algebraic
context, can be found in the Appendix C. For the case E = TM , see [70, Corollary 2.5.7], [26, Section
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5]. Under this general framework, we can present the cochain complex of some geometric structures,
such as regular Poisson structures [74, 62], Poisson foliations [66, Lemma 4.1], the de Rham complex
on a foliated manifold [61, 8], and the cohomology of an extension of a Lie algebroids [7, Prop. 3.2].

Now we observe how this theorem can be applied in the context of coupling twisted Poisson and
Dirac structures on foliated manifolds. As we show in Section 4.3, each coupling twisted Dirac structure
D with associated ψ-Dirac elements (P, γ, σ) admits the following splitting

D = Graph(P ]|Aγ )⊕Graph(−σ[|Hγ ),

in which Γ(Graph(P ]|Aγ )) is closed under the ψ-Dorfman bracket. So, our previous theorem applies for
this splitting, which means that the cochain complex of a coupling twisted Poisson or Dirac structure
is of the kind described above, and our main results on the computation of its cohomology may be
applied. Furthermore, this observation suggests that we may be able to find an adequate bigraded
model for the associated cochain complexes of a coupling twisted structure on a foliated manifold, to
effectively describe its cohomology.

Recall that a bigraded model for the cochain complex of coupling Poisson and Dirac structures
was given in [15, Prop. 5.3] and [50, Prop. 4.2.8] in the category of fibred manifolds. However, as is
known, the notion of coupling structures is not exclusive for fibred manifolds, and can be naturally
extended to foliated manifolds [65, 67]. In this sense, Section 4.2 is devoted to adapt constructions
presented in [50, Subsection 4.2] to the category of foliated manifolds by using Vinogradov calculus.

We believe that the construction of this generalization to the case of foliated manifolds gives more
insight in the understanding of the algebraic aspects of the coupling method in Poisson geometry. In
particular, we have found that it is possible to extend the notion of coupling to the case of Poisson
and Dirac structures with background [79]. This straightforward generalization is presented in Section
4.3, where it is shown that the de Rham complex of the Lie algebroid of a coupling twisted Poisson
and Dirac structure on a foliated manifolds is isomorphic to a bigraded cochain complex of the same
type as before. More precisely, the results we have obtained are the following:

Theorem (Coupling Twisted Poisson structures). Let ψ ∈ Γ(∧3T ∗M) be a closed 3-form on the
foliated manifold (M,V), and denote V := TV, V ◦ := Ann(V ). For each ψ-Poisson structure Π ∈
Γ(∧2TM) such that Π](V ◦) ⊕ V = TM , there exist unique P ∈ Γ(∧2V ), γ ∈ Γ(T ∗M ⊗ V ), and
σ ∈ Γ(∧2V ◦) such that:

1. (M,V, P ) is a ψ-Poisson foliation.

2. γ is a ψ-Poisson connection on (M,V, P ), with horizontal distribution Hγ := ker γ.

3. The curvature Rγ of γ is locally Hamiltonian, via the closed 3-form (dσ + ψ).

4. dσ + ψ vanishes on Γ(∧3Hγ).

In this case, we say that the ψ-Poisson structure Π is coupling on (M,V), and (P, γ, σ) is called
its associated ψ-Dirac elements. Of course, in the case ψ = 0 we recover the standard results for
Poisson structures [77, 65]. We also note that this fact is proven in the more general context of Dirac
structures with background (see Theorem 4.21). The first part of this result, relative to the existence
of the geometric data, is proved by pure linear algebra, and then adapted to foliated manifolds in
Proposition 2.23. The second part, which describes the structure equations of the geometric data,
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is obtained in Subsection 4.3.1 by straightforward computations with the Dorfman bracket on the
Pontryagin bundle.

As mentioned above, there is a bigraded model for the cochain complex of a coupling twisted
Poisson structure.

Theorem (Cohomological model for twisted structures). Let Π ∈ Γ(∧2TM) be a coupling ψ-Poisson
structure on the foliated manifold (M,V) with geometric data (P, γ, σ). The cochain complex
(Γ(∧•TM), Π,ψ) is isomorphic to a bigraded cochain complex (C•, = 0,1 + 1,0 + 2,−1), given

by C• := Γ(∧•(V ⊕ V ◦)), and 0,1 = P + j
(0,1)
P,ψ , 0,1 = γ + j

(1,0)
P,ψ , and 2,−1 = σ + j

(2,−1)
γ,ψ .

In the case ψ = 0, the bigraded components P
0,1, γ

1,0, and σ
2,−1 of the coboundary operator are

in correspondence with the Dirac elements (P, γ, σ). However, in the general case, the presence of the
background 3-form produces some intertwine of the Dirac elements in the description of the bigraded
components.

Applications to cohomology in low degree in semilocal Poisson geometry

In the last part of this work, we present some applications of our general algebraic results, obtained
the context of bigraded cochain complexes, to describe the infinitesimal Poisson automorphisms of
coupling Poisson structures, the first cohomology, and the modular class.

Infinitesimal Poisson automorphisms around symplectic leaves. Given a coupling Poisson
structure Π on a foliated manifold (M,V) with associated geometric data (P, γ, σ), there are three
geometric objects involved in the description of the first cohomology [70]: a cochain complex (N •0 ,

γ
),

called the de Rham-Casimir complex, a Lie subalgebra A of V-tangent infinitesimal automorphisms
of P , and a mapping ρ : A → H2(N •0 ,

γ
) from A to the second cohomology of (N •0 ,

γ
). In fact, the

short exact sequence describing the first Poisson cohomology reads

0→ H1(N0,
γ
)
]H−→ H1(M,Π)

γ∗−→ ker ργ

Ham(M,P )
→ 0. (2)

Here, ]H is the sharp map of the horizontal component of Π, and γ∗ is the map induced in cohomology
by the projection γ : TM → TV. We should note that the coboundary operator

γ
only depends

on γ. Moreover, since N0 only depends on the Casimir functions of P , a Hamiltonian change of γ
does not alter the coboundary operator. On the other hand, if the first cohomology of the associated
Poisson foliation vanishes, H1(M,V, P ) = {0}, then the right term in (2) is zero. Furthermore, one has
H1(M,Π) ∼= H1(N0,

γ0
) for any Poisson connection γ0 on (M,V, P ). Assuming that a flat Poisson

connection exists, and under some projectability conditions, H1(M,Π) can be embedded in the first
cohomology of a foliated de Rham complex. These conditions can be realized geometrically and, for
instance, allows to present the following generalization of the cohomological part of Conn’s results to
neighborhoods of symplectic leaves:

Theorem (Triviality of the first cohomology). Let S ⊂ M be an embedded symplectic leaf of the
Poisson manifold (M,Ψ) such that the normal bundle of S (viewing as a Lie-Poisson bundle) is trivial.
Assume that the isotropy algebra of the symplectic leaf S is a semisimple Lie algebra of compact type.
If S is compact and simply connected, then there exists a tubular neighborhood N of S in M such that
every Poisson vector field of Ψ is Hamiltonian on N .
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This fact readily follows from Proposition 5.21 in Chapter 5. We also give some other examples
and classes of coupling Poisson and Dirac structures for which our general results can be effectively
applied in the computation of the first Poisson cohomology.

Reeb and modular classes of Poisson structures on foliated manifolds

Poisson foliations and the modular class. As in the problem of the general computation of the
cohomology, our results on the modular class are inspired in some sense by what occurs in the case
of regular Poisson manifolds. Recall that the modular vector field of a regular Poisson manifold is
always tangent to the symplectic foliation. So, the modular class of a regular Poisson manifold can
be regarded as a foliated de Rham cohomology class of its characteristic foliation. More precisely,
for a regular Poisson manifold (M,Π) with symplectic foliation (S, ω) of rank 2k, the modular class
Mod(M,Π) of the Poisson manifold is equivalent to the Reeb class Mod(M,S) of its characteristic
foliation, in the sense that

Mod(M,Π) = −Π] Mod(M,S). (3)

In particular, for regular Poisson manifolds, the unimodularity of (M,Π) only depends on its
characteristic foliation S, rather than in the leaf-wise symplectic form ω. The relationship between
the Reeb and modular class was first observed by Weinstein [83, Section 5], and then formalized
by Abouqateb and Boucetta [1] in the form (3). Geometrically, the Reeb class of a regular
foliation is the obstruction to the existence of a transverse volume element invariant under the
flow of every tangent vector field. On the other hand the leaf-wise Liouville volume form ωk ∈
Γ(∧2kT ∗S) gives a correspondence between volume forms Ω on M , and transverse volume elements
η ∈ Γ(∧top(TM/TS)∗), namely, Ω = ωk ∧ η. Since, tangentially, the leaf-wise Liouville volume form
ωk is already invariant under Hamiltonian flows, the problem of finding an invariant volume form Ω
turns into finding an invariant transverse volume element η.

We first give a generalization of these results in the context of Poisson foliations. Recall that a
regular Poisson manifold can be regarded as a Poisson foliation such that the leaf-tangent Poisson
structure is symplectic at each leaf. As described in above, the fact that in this case the leaf-wise
Liouville volume form is invariant under every Hamiltonian flow led to the cohomological relation of
equation (3). However, for a general Poisson foliation (M,V, P ), such an invariant leaf-wise volume
form may not exists. Instead, we get a new cohomology class, called the modular class of the Poisson
foliation Mod(M,V, P ). In fact, each leaf-wise volume form τ ∈ Γ(∧topT ∗V) induces the so-called
modular vector field of the Poisson foliation ZτP . This vector field ZτP ∈ Γ(TV) coincides on each
leaf L of V with the modular vector field of the Poisson submanifold (L,PL) induced by the volume
form τ |L. It turns out that the family of such modular vector fields define a Poisson cohomology
class, namely, Mod(M,V, P ), which is the obstruction to the existence of a leaf-wise volume form
invariant under every Hamiltonian flow. As is shown in Proposition 6.3, the following more general
cohomological relation is satisfied:

Theorem (Modular class of Poisson foliations). Let Mod(M,P ) be the modular class of (M,P ) as
Poisson manifold, Mod(M,V) the Reeb class of the regular foliation V, and Mod(M,V, P ) the modular
class of the Poisson foliation (M,V, P ). Then,

Mod(M,P ) = −P ] Mod(M,V) + Mod(M,V, P ).
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Semilocal unimodularity and the generalized Reeb class. We also present a description of the
modular class in neighborhoods of symplectic leaves. Besides the results of [83, Section 5] and [1], which
says that the unimodularity of regular Poisson manifolds is determined by the tangential geometry, it
is convenient to recall what occurs in the local context. By Weinstein Splitting Theorem [82, Theorem
2.1], the local structure of a Poisson manifold at a given point is given as the product of a symplectic
structure with the so called transverse Poisson structure. In this sense, the local unimodularity
property is determined by the transverse Poisson structure, because symplectic manifolds are always
unimodular. This means that, locally, the unimodularity is determined by the transversal geometry.
Therefore, it is natural to expect that, in the semilocal context, the unimodularity is described by the
interaction between the tangential and transversal geometry of the leaf.

This interaction can be effectively described in terms of coupling Poisson structures. Let Π be a
coupling Poisson structure on the foliated manifold (M,V) with associated geometric data (P, γ, σ).
The first key observation in this context is that volume forms on M are in correspondence with
leaf-wise volume forms on V. In fact, due to the non-degeneracy of σ, every volume form Ω on M can
be factored as Ω = σl ∧ τ . Here, 2l = rankHγ , and τ is a leaf-wise volume form on V. In terms of this
correspondence, the modular vector field of (M,Π) induced by Ω splits into horizontal and vertical
components depending on τ , namely,

ZΩ
Π = Π]θγτ + ZτP . (4)

The vertical component ZτP is the modular vector field of the Poisson foliation (M,V, P ) induced by
τ . The horizontal component is the image under Π] of the so-called divergence form θγτ , which is the
1-form vanishing along the V-leaves characterized by θγτ (X) = divτ (X) for all X ∈ Γ(Hγ)∩aut(M,V).
So, formula (4) says that the leaf-tangent component of the modular vector field ZΩ

Π is modular vector
field ZτP of (M,V, P ): γ(ZΩ

Π) = ZτP .
Our previous formula implies that at the level of cohomology one has

γ∗Mod(M,Π) = Mod(M,V, P ).

This means that an obstruction to the unimodularity of (M,Π) is the modular class of the Poisson
foliation (M,V, P ). However, the vanishing of Mod(M,V, P ) may be not sufficient for the vanishing
of Mod(M,Π). In fact, due to the exactness of (2), we found that, under the unimodularity of
(M,V, P ), there exists a cohomology class in H1(N0,

γ
) whose image under Π] is the modular class.

Furthermore, this cohomology class is the family of divergence 1-forms θγτ0 ∈ N 1
0 , where τ0 varies

over the leaf-wise volume forms invariant under every Hamiltonian flow of P , that is, Zτ0P = 0. More
precisely, if Mod(M,V, P ) = 0, then [θγτ0 ] exists, and we have

Mod(M,Π) = −Π][θγτ0 ]. (5)

If we take a look at the cohomological relation (3) for regular Poisson manifolds, we find that the
cohomology class [θγτ0 ] in (5) plays an analogous role to the Reeb class, in the sense that it controls
the unimodularity property. For this reason, we call it the generalized Reeb class of (M,V,Π), which
only exists when the Poisson foliation (M,V, P ) is unimodular. Furthermore, it is important to note
that, given P and γ, the corresponding objects ZτP and θγτ only depend on τ and, henceforth, their
cohomology classes are well defined. This means that the unimodularity of (M,Π) is independent
of the coupling form σ, which is an analog to the fact that, in the regular case, the unimodularity
property is independent of the leaf-wise symplectic form.

These facts are translated to the semilocal context as follows:
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Theorem (Generalized Reeb class). Let (M,Π) be an orientable Poisson manifold and S an embedded
symplectic leaf. There exists a tubular neighborhood N of S such that

Π = ΠH + ΠV on N.

Here, ΠH is a bivector field on N with rank ΠH = dimS, and ΠV is the transverse Poisson structure
of S. Moreover, if Mod(N,ΠV ) = 0, then there exists a cohomology class Reeb(S) of the de Rham -
Casimir complex of S, such that

Mod(N,Π) = −(Π]
H)∗Reeb(S).

Observe that the question on the definition of the generalized Reeb class Reeb(S) of the symplectic
leaf S is nontrivial. The main difficulty is to show that its construction is independent of the choice
of a tubular neighborhood of the symplectic leaf (see Proposition 6.21).

Structure of the text

This thesis is organized as follows. The first part, which consists of the first two chapters, is devoted
to review the preliminary notions which are needed throughout this work. In Chapter 1 we review
the notions of Poisson manifolds, Dirac structures, Lie algebroids, and Poisson cohomology, while in
Chapter 2 we present the coupling method on foliated manifolds. In the second part, we describe
the cohomology of coupling Poisson structures. Chapter 3 presents an algebraic framework for the
computation of the cohomology of a bigraded cochain complex. In Chapter 4, we describe some of
the geometric structures which give rise to a bigraded cochain complex. In particular, we focus on
the case of coupling twisted Poisson and Dirac structures. The third part of this work is devoted
to the applications to the first cohomology of coupling Poisson and Dirac structures. In Chapter
5, the algebraic results on the computation of the first cohomology are reviewed from a geometric
point of view. We also present different cases in which the first Poisson cohomology can be effectively
described. Chapter 6 is devoted to the description of the modular class of Poisson structures on
foliated manifolds, such as Poisson foliations, and coupling Poisson structures, with applications to
the semilocal context. In particular, we discuss on the generalized Reeb class.
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Introduction to Part I

The main objective of this part is to present a brief summary of the basic notions in Poisson geometry
and cohomology, as well as a description of the coupling method and semilocal Poisson geometry from
an algebraic point of view.

Poisson geometry is a branch of mathematics which lies in the intersection of differential
geometry and mathematical physics. For example, Poisson manifolds are the reduced phase space
for Hamiltonian systems with symmetry. Furthermore, the formalism of Poisson manifolds arises
in several contexts, such as Hamiltonian mechanics, integrable systems, topological field theories,
deformation theory, representation theory and non-commutative geometry, to mention a few.

Given a point on a Poisson manifold, there exists a neighborhood of it which is Poisson isomorphic
to the direct product of a symplectic manifold with a Poisson manifold vanishing at a point [82,
Theorem 2.1]. The symplectic factor is just the symplectic leaf through the given point. The Poisson
structure on the second factor is the so-called transverse Poisson structure, and encodes the singular
behavior of the Poisson manifold at that given point. Thus, the problem of the local equivalence of
Poisson manifolds reduces to the study of the transverse Poisson structure: two Poisson structures on
a manifold are locally equivalent if and only if their transverse Poisson structures are isomorphic.

On the other hand, given two points on the same symplectic leaf, the corresponding transverse
Poisson structures are isomorphic. In that sense, a natural problem is the existence of a way of gluing
the transverse Poisson structures along the symplectic leaf to get a transverse Poisson bundle. Indeed,
the answer to this question is affirmative: given an embedded symplectic leaf, there exists a tubular
neighborhood of it which is a locally trivial Poisson bundle whose typical fiber is the transverse Poisson
structure at some (any) point of the leaf. This transverse Poisson bundle is one of the invariants around
the embedded symplectic leaf.

A second question, given in the context of the equivalence of Poisson structures around symplectic
leaves, would be the following: if two Poisson structures share an embedded symplectic leaf with the
same transverse Poisson bundle, do the Poisson structures are equivalent on a neighborhood of the
symplectic leaf? Although the transverse Poisson structure at a given point is the only local invariant,
the problem of equivalence of Poisson structures around symplectic leaves is more subtle, and the
answer to this question is negative. This problem, as well as the existence of the transverse Poisson
bundle, belong to the field of semilocal Poisson geometry.

In general, the term “semilocal Poisson geometry” refers to Poisson geometry in the context of
neighborhoods of embedded submanifolds, such as symplectic, cosymplectic, or Poisson submanifolds.

The emergence of semilocal Poisson geometry is closely related with the coupling method. The
origins of this method go back to Sternberg, who developed a covariant version of it to construct the
symplectic form which gives the Hamiltonian structure to the Wong’s equations describing the motion
of a particle in a Yang-Mills field [59]. Later on, Vorobiev developed a contravariant version of it to
describe the geometry of a Poisson manifold in neighborhoods of embedded symplectic leaves [77]. In
fact, he showed that the class of coupling Poisson structures provides the semilocal model for Poisson
manifolds around symplectic leaves. It is important to mention that the coupling method can be

15
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applied to any embedded symplectic leaf, regardless the possibly singular nature of it.
The coupling method allows to formulate some equivalence criteria between Poisson structures

with a common symplectic leaf [78]. It also allows to define the linearized structure of a Poisson
manifold around a symplectic leaf [77], and to formulate some linearizability criteria for Hamiltonian
systems and Poisson structures [72, 73]. Also, coupling Poisson structures realize any transitive Lie
algebroid with symplectic base as the restricted Lie algebroid of a coupling Poisson structure to a
symplectic leaf [76].

Roughly speaking, the semilocal structure of a Poisson manifold around a symplectic leaf
is described by the transverse Poisson bundle of the leaf, which is coupled with a horizontally
non-degenerated 2-form, called the coupling form, via a possibly nonlinear Ehresmann connection
on the tubular neighborhood. This triplet of geometric structures is said to be the geometric data
of the Poisson manifold around the symplectic leaf [77, Theorem 2.1], also called Dirac elements [50,
Definition 4.2.3]. In terms of the geometric data, the characteristic distribution is generated by the
one of the transverse Poisson structure and the horizontal distribution of the connection. Similarly,
the leaf-wise symplectic structure is the sum of the one of the transverse Poisson structure with the
coupling form.

Later on, some generalizations of the coupling method were introduced. For example, Dufour and
Wade applied it to describe the local and semilocal structure of Dirac manifolds [20]. They found out
that, in neighborhoods of embedded presymplectic leaves, Dirac structures are described by a triple of
geometric data for which the coupling form can be degenerated. In the same year, Vaisman introduced
the notions of coupling Poisson, Dirac, and Jacobi structures on foliated manifolds [65, 67], giving an
important step in the understanding the algebraic nature of the coupling method. In this sense, a
coupling Dirac structure is Poisson if and only if its coupling form is horizontally non-degenerated.
Moreover, Vaisman also introduced the more general notions of almost-coupling Poisson and Dirac
structures, which appear in the context of slow-fast Hamiltonian systems and of the averaging method
[4, 3, 68, 69].

There are some other important and recent contributions in the field of semilocal Poisson geometry.
In [50, 51], some normal form theorems around Poisson submanifolds are presented. Furthermore, for
several geometric structures in Poisson Geometry, splitting theorems around transversal submanifolds
are given in [10] (for the case of Poisson structures and cosymplectic submanifolds, see also [24]). Since
in this work, we are focused in the geometry and cohomology of Poisson manifolds around symplectic
leaves, by the term “semilocal” we will refer to neighborhoods of symplectic leaves.



Chapter 1

Generalities on Poisson Geometry

Here we give a brief review of some structures in Poisson Geometry, which are used throughout this
work. For a more detailed presentation of these notions we recommend [13, 18, 19, 21, 39, 79, 64, 82].

1.1 Poisson manifolds

Let M be a manifold, and Γ(∧•TM) the algebra of multivector fields with the exterior product ∧.
Consider the Schouten-Nijenhuis bracket [·, ·] of multivector fields, defined on the in such a way that
(Γ(∧•TM),∧, [·, ·]) is a Poisson algebra of degree −1 (see, for instance, [21, Theorem 1.8.1]). A bivector
field Π ∈ Γ(∧2TM) on M is said to be a Poisson structure, or Poisson bivector field, if

[Π,Π] = 0.

This equation is called the Jacobi identity. The pair (M,Π) is said to be a Poisson manifold [44,
Section 1], [27, Section 6], [82, Section 1]. The Poisson structure Π defines an R-bilinear operation on
C∞(M) by

{f, g} := Π(d f, d g) ∀f, g ∈ C∞(M),

which is a Poisson bracket on C∞(M) due to the Jacobi identity.
Consider the vector bundle map Π] : T ∗M → TM given on α ∈ T ∗pM by β(Π]α) := Πp(α, β) for

all β ∈ T ∗pM . This map can be extended to a morphism of exterior algebras Π] : ∧kT ∗M → ∧kTM
by setting Π]Θ(α1, . . . , αk) := (−1)kΘ(Π]α1, . . . ,Π

]αk). Given a smooth function f ∈ C∞(M), then
Π] d f ∈ Γ(TM) is said to be the Hamiltonian vector field of f . In this case, f is said to be the
Hamiltonian function of Π] d f . It follows from the Jacobi identity that

[Π] d f,Π] d g] = Π] d{f, g} ∀f, g ∈ C∞(M),

which, together with the R-linearity of d and Π], implies that the Hamiltonian vector fields define an
R-Lie algebra, denoted by Ham(M,Π). Again, by the Jacobi identity, for all Z ∈ Ham(M,Π), we have

LZ Π = 0.

In general, whenever a vector field Z ∈ Γ(TM) satisfies the previous relation, we say that Z is an
infinitesimal Poisson automorphism of Π, or, shortly, a Poisson vector field. It follows from the graded
Jacobi identity for the Schouten-Nijenhuis bracket that the Poisson vector fields also define a Lie
algebra, denoted by Poiss(M,Π), for which Ham(M,Π) is an ideal. Moreover, Poiss(M,Π) is just the
Lie algebra of derivations of the Poisson algebra (C∞(M), ·, {·, ·}). Furthermore, Z is an infinitesimal
Poisson automorphism of Π if and only if its flow FltZ satisfies the following relation for all t ∈ R:
(FltZ)∗Π = Π.

17
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Example 1.1. A symplectic manifold (M,ω) consists of a manifold M equipped with a closed and
non-degenerated 2-form ω ∈ Γ(∧2T ∗M): dω = 0, and ω[ : TM → T ∗M is an isomorphism. Then,

Πω(α, β) := ω
(
(ω[)−1α, (ω[)−1β

)
, ∀α, β ∈ Γ(T ∗M),

defines a bivector field Πω ∈ Γ(∧2TM) which is Poisson, due to the closedness of ω. The Hamiltonian
vector field X of f is given by iX ω = −d f , and the Poisson vector fields Z of Πω are those of the
form Z = Π]

ωα, for some closed 1-form α ∈ Γ(T ∗M). H

Example 1.2. Let g∗ be the dual of a finite-dimensional R-Lie algebra (g, [·, ·]g). A Poisson bracket
on g∗ can be canonically defined as follows: for f, g ∈ C∞(g∗), the Poisson bracket {f, g} ∈ C∞(g∗) is
given on p ∈ g∗ by

{f, g}(p) := p([dp f,dp g]g).

Here we are using the identification T ∗p (g∗) ∼= g. On the other hand, consider the identification
g ∼= (g∗)∗ in which each ξ ∈ g is viewed as a linear function ξ : g∗ → R. The Hamiltonian vector field
of ξ is precisely the infinitesimal generator ξg∗ ∈ Γ(g∗) of the coadjoint action on g∗ of the connected
and simply connected Lie group G integrating g. H

Example 1.3. On a two-dimensional manifold M , every bivector field Π is Poisson since [Π,Π] ∈
Γ(∧3TM) = {0}. On a 3-dimensional manifold, the set of Poisson vector fields in invariant under
multiplication by smooth functions. Indeed, if Π ∈ Γ(∧2TM) is a Poisson structure on M , and
f ∈ C∞(M), then

[fΠ, fΠ] = 2f [f,Π] ∧Π + f2[Π,Π] = −2fΠ] d f ∧Π = −f id f (Π ∧Π).

In the case when dimM = 3, we have Π ∧Π ∈ Γ(∧4TM) = {0}, and hence, fΠ is Poisson. H

Symplectic foliations. Given a Poisson manifold (M,Π), its characteristic distribution CΠ ⊆ TM
is the image of Π] : T ∗M → TM . It is clear from the definition of CΠ that for each p ∈M , and v ∈ CΠ

p ,

there exists f ∈ C∞(M) such that v = Π]
p dp f . In other words, CΠ is generated by Ham(M,Π). Now,

let ϕ := FltX be the flow of X := Π] d f at some time t ∈ R. Then,

(ϕ∗)p(v) = (ϕ∗)p(Π
]
p dp f) = Π]

ϕ(p)(ϕ
∗
ϕ(p) dp f) = Π]

ϕ(p)(dϕ(p) ϕ
∗f) ∈ CΠ

ϕ(p).

The second equality uses the fact that X ∈ Poiss(M,Π), and the third equality is just the chain rule.
Since v ∈ CΠ

p is arbitrary, we get ((FltX)∗)p(C
Π
p ) ⊆ CΠ

FltX(p)
for all p ∈M , X ∈ Ham(M,Π), and t ∈ R.

This and the fact that Ham(M,Π) generates CΠ imply that CΠ is involutive and, therefore, integrable
in the sense of Stefan-Sussmann [58, Corollary 1], [60, Theorem 4.2]. In other words, there exists a
foliation S of M integrating the characteristic distribution, that is, CΠ = TS.

On the other hand, there exists ωS ∈ Γ(∧2T ∗S), well defined by ωS(Π] d f,Π] d g) = Π(d f,d g),
which is closed and non-degenerated along the leaves of S. Each leaf S of S, together with the leaf-wise
symplectic structure ωS := ωS |S , is said to be a symplectic leaf of (M,Π). The pair (S, ωS) is the
symplectic foliation of (M,Π), which fully characterize the Poisson structure Π.

Example 1.4. For a symplectic manifold (M,ω), the symplectic foliation consists of the connected
components of M , and the leaf-wise symplectic structure is just ω. H
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Example 1.5. For the coalgebra g∗ of a Lie algebra g with integrating connected and simply connected
Lie group G, the symplectic leaves of g∗ are the coadjoint G-orbits. This follows from the fact that
the Hamiltonian vector fields, which generate the symplectic foliation, coincide with the infinitesimal
generators of the coadjoint action, which generate the tangent space to the coadjoint orbits. The
leaf-wise symplectic form is given by ωS(ξg∗ , ηg∗)(p) = p([ξ, η]g) for all ξ, η ∈ g. H

1.2 Lie algebroids

The idea of a Lie algebroid is to have a vector bundle endowed with a structure which is similar to
the one of the tangent bundle of a manifold. Indeed, many geometric structures naturally induce a
Lie algebroid, which encodes, for instance, the cohomological information of the geometric structure.

Definition 1.6. A Lie algebroid is a triple (E, q, [·, ·]E) which consists of a vector bundle E → M
whose sections are endowed with a Lie bracket [·, ·]E : Γ(E)× Γ(E)→ Γ(E), and a vector bundle map
q : E → TM satisfying

[a, fb]E = f [a, b]E + Lq(a) f · b, ∀a, b ∈ Γ(E), f ∈ C∞(M). (1.1)

The vector bundle map q : E → TM is called the anchor of the Lie algebroid, and the identity
(1.1) is called the Leibniz rule. It follows from the definition of a Lie algebroid that the anchor map
is a Lie algebra morphism [21, Lemma 8.1.4]:

q[a, b]E = [q(a), q(b)] ∀a, b ∈ Γ(E). (1.2)

Example 1.7 (Tangent Lie algebroid and regular foliations). The simplest example of a Lie algebroid
is the triple (TM, IdTM , [·, ·]), consisting of the tangent bundle of M , the identity map, and the Lie
bracket of vector fields. Similarly, on a foliated manifold (M,F), the triple (TF , ι, [·, ·]F ) is a Lie
algebroid, where TF is the tangent bundle to the F-leaves, ι : TF ↪→ TM is the natural inclusion,
and [·, ·]F is the restriction of the Lie bracket to the tangent vector fields Γ(TF). H

Example 1.8 (Poisson manifolds). Every Poisson structure on a manifold induces a Lie algebroid
structure on the cotangent bundle. More precisely, if (M,Π) is a Poisson manifold, then the triple
(T ∗M,Π], {·, ·}Π), where

{α, β}Π := LΠ]α β − iΠ]β dα, ∀α, β ∈ Γ(T ∗M), (1.3)

is a Lie algebroid. In particular, the morphism property Π]{α, β}Π = [Π]α,Π]β] holds for all α, β ∈
Γ(T ∗M). Conversely, if Π is a bivector field satisfying the morphism property, then Π is Poisson, and
hence the triple (T ∗M,Π], {·, ·}Π) is a Lie algebroid. H

Example 1.9 (Principal bundles). Let P
p→ M be a G-principal bundle, and consider the tangent

lift of the action on P to the tangent bundle TP . The orbit space TP/G is a vector bundle over M
whose sections naturally identify with the invariant vector fields on P ,

TP

τ

��

π // TP/G

τ̃
��

TP

p∗ ""

π // TP/G

qzz
P

p //M TM
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Hence, the Lie bracket of invariant vector fields on P induces a Lie bracket [·, ·]TP/G on ΓM (TP/G).

Furthermore, the differential TP
p∗→ TM induces a vector bundle map TP/G

q→ TM satisfying the
Leibniz rule. Therefore (TP/G, q, [·, ·]TP/G) is a Lie algebroid, called the Atiyah algebroid of P . H

Example 1.10 (Restriction to a symplectic leaf). Let ι : S ↪→ M be a symplectic leaf of a Poisson

manifold (M,Π). The triple (TSM := ι∗(TM),Π]
S , {·, ·}S) is a Lie algebroid over S, where ι∗◦Π]

S ◦ι∗ =
Π], and {ι∗α, ι∗β}S = ι∗{α, β}Π, holds for all α, β ∈ Γ(TM). H

The last two are examples of a transitive Lie algebroid, that is, the anchor map is surjective. In
Example 1.10, S can be replaced by any submanifold N of M such that Π](T ∗NM) ⊆ TN . Such
submanifolds ι : N ↪→M are said to be Poisson, due to the fact that the Poisson structure Π can be
naturally restricted to N , in the sense that there exists a Poisson structure ΠN ∈ Γ(∧2TN) such that

ι∗ ◦Π]
N ◦ ι∗ = Π].

Remark 1.11. For n ∈ N, consider the group of permutations Sn of {1, . . . , n}. Given σ ∈ Sn, and
k ∈ {1, . . . , n}, we denote by σk := σ(k) the value of σ on k. Explicitly,

σ =

(
1 2 · · · n
σ1 σ2 · · · σn

)
.

We will also denote by (−1)σ the sign of σ. On the other hand, for i, j ∈ N, we denote by

S(i,j) := {σ ∈ Si+j | σ1 < σ2 < · · · < σi, and σi+1 < σi+2 < · · · < σi+j}

the subset of shuffle permutations of Si+j. The subset S(i,j,k) ⊆ Si+j+k is defined similarly.

1.2.1 Equivalent definitions

There exist some alternative ways to define a Lie algebroid structure on a vector bundle E →M [21,
Sections 8.2 and 8.6], [57, Sections 2.2 and 3.2]. For the purposes of this work, here we revise the
following:

• A graded derivation E ∈ Der(Γ(∧•E∗)) of degree 1 and of square zero, 2
E = 0.

• A graded Poisson bracket [·, ·]E of degree -1 on (Γ(∧•E),∧).

• A Poisson structure ΠE on E∗ preserving the fiber-wise linear functions.

The de Rham differential. Let (E, q, [·, ·]E) be a Lie algebroid. For each α ∈ Γ(∧kE∗), Eα ∈
Γ(∧k+1E∗) is given on a1, . . . , ak+1 ∈ Γ(E) by the Koszul’s formula

Eα(a1, . . . , ak+1) :=
∑

σ∈S(1,k)

(−1)σ Lq(aσ1 )(α(aσ2 , . . . , aσk+1
))−

∑
σ∈S(2,k−1)

(−1)σα([aσ1 , aσ2 ]E , aσ3 , . . . , aσk+1
).

This defines a graded derivation E ∈ Der1(Γ(∧•E∗)). The fact that 2
E = 0 follows from observing

that 2
E = 1

2 [ E , E ], where [·, ·] denotes the graded commutator of endomorphisms of Γ(∧•E∗).
Thus, 2

E is also a graded derivation of degree 2 vanishing on C∞(M) and Γ(E∗), due to (1.2) and the
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Jacobi identity for [·, ·]E , respectively. Conversely, the anchor map q and the Lie bracket [·, ·]E can be
recovered from E by reversing the Koszul’s formula for k = 0, 1, as follows:

Lq(a) f := Ef(a), α([a, b]E) := Lq(a)(α(b))− Lq(b)(α(a))− Eα(a, b),

where a, b ∈ Γ(E), f ∈ C∞(M), and α ∈ Γ(E). It is also important to note from (1.2) that the dual
of the anchor map q∗ : Γ(∧•T ∗M)→ Γ(∧•E∗) is a cochain complex morphism between the de Rham
complexes of (E, q, [·, ·]E) and (TM, IdTM , [·, ·]), where the latter is the standard de Rham complex.

The Schouten bracket. Given a Lie algebroid (E, q, [·, ·]E) and its differential , we can associate
to each A ∈ Γ(∧kE) the differential operator iA ∈ End−k(Γ(∧•E∗)) given as follows: if A = a1∧· · ·∧ak
for some a1, . . . , ak ∈ Γ(E), then iA := ia1 ◦ · · · ◦ iak , where iai is the insertion operator. For a general
A ∈ Γ(∧kE), iA is defined by R-linear extension. Moreover, we define LA ∈ End−k+1(Γ(∧•E∗))
by LA := [ , iA], where [·, ·] is the graded commutator of graded endomorphisms. Explicitly, LA =
◦iA−(−1)k iA ◦ . Now, for A ∈ Γ(∧kE) and B ∈ Γ(∧lE), there exists a unique [A,B]E ∈ Γ(∧k+l−1E)

such that

i[A,B]E = [LA, iB].

This gives an R-bilinear operation [·, ·]E : Γ(∧•E) × Γ(∧•E) → Γ(∧•E) such that (Γ(∧•E),∧, [·, ·]E)
is a graded Poisson algebra of degree -1. Indeed, the graded skew-symmetry, Leibniz rule, and Jacobi
identity follow from the corresponding ones of the graded commutator on End•(Γ(∧•E∗)). It is also
important to mention that [·, ·]E agrees on Γ(E) with the original bracket of the Lie algebroid, so
there is no ambiguity in the usage of this notation. Furthermore, [a, f ]E = Lq(a) f for all a ∈ Γ(E)
and f ∈ C∞(M). These facts allow to recover the Lie algebroid structure on E from a graded Poisson
bracket [·, ·]E on Γ(∧•E).

Definition 1.12. The derivation E ∈ Der1(Γ(∧•E∗)) and the bracket [·, ·]E described above are called
the de Rham differential and the Schouten bracket of the Lie algebroid (E, q, [·, ·]E), respectively.

Fiber-wise linear Poisson structures. Let E
p→ M be a vector bundle. For each a ∈ Γ(E), let

ϕa ∈ C∞(E∗) be the corresponding fiber-wise linear function ϕa : E∗ → R defined by the natural
pairing: ϕa(α) := α(ap(α)). Given a Lie algebroid (E, q, [·, ·]E), there exists a unique Poisson structure

ΠE ∈ Γ(∧2T (E∗)), defined on the total space of its dual bundle E∗
π→M , by

ΠE(dϕa, dϕb) := ϕ[a,b]E . (1.4)

The uniqueness of ΠE follows from the fact that, for all α ∈ E∗, T ∗α(E∗) = {dα ϕa | a ∈ Γ(E)}, and
the Jacobi identity for ΠE follows for the one for [·, ·]E . As a consequence of the Leibniz rule (1.1)
and the fact that ϕfa = π∗fϕa for all f ∈ C∞(M) and a ∈ Γ(E), we get

ΠE(dϕa,dπ
∗f) = π∗ Lq(a) f. (1.5)

Relations (1.4) and (1.5) allow to recover a Lie algebroid structure (E, q, [·, ·]) on E from a fiber-wise
linear Poisson structure ΠE on E∗.
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1.2.2 The characteristic foliation

It is well known that every Lie algebroid induces on the base manifold a generalized foliation.
Let (E →M, q, [·, ·]E) be a Lie algebroid. Its characteristic distribution is the image of the anchor

map, CE := q(E). Now, consider its Poisson structure ΠE on the dual bundle E∗
π→ M . We

claim that, for all a ∈ Γ(E), the Hamiltonian vector field Xa := Π]
E dϕa ∈ Γ(T (E∗)) is π-related to

q(a) ∈ Γ(TM). This follows from (1.5),

LXa π
∗f = ΠE(dϕa, dπ

∗f) = π∗ Lq(a) f, ∀f ∈ C∞(M).

Moreover, since the characteristic distribution CΠE of ΠE in E∗ is generated by the Hamiltonian vector
fields Xa of the fiber-wise linear functions ϕa, and the characteristic distribution of E is generated by
the q(a)’s, our previous claim implies

π∗α(CΠE
α ) = CEπ(α) ∀α ∈ E∗,

and π ◦ FltXa = Fltq(a) ◦π, for all t ∈ R and a ∈ Γ(E). Thus, denoting Φ := FltXa , and φ := Fltq(a), and

by applying the fact that CΠE is an involutive distribution on E∗, we get

φ∗π(α)
(CEπ(α)) = φ∗π(α)

(π∗α(CΠE
α )) = π∗Φ(α)

(Φ∗α(CΠE
α )) = π∗Φ(α)

(CΠE
Φ(α)) = CEπ(Φ(α)) = CEφ(π(α)).

Therefore, the characteristic distribution CE of the Lie algebroid E is also involutive in the sense of
Stefan-Sussmann. Hence, it induces a foliation L of M such that TL = CE , which is also called the
characteristic foliation of E.

1.3 Dirac structures

The formalism of Dirac structures gives a natural generalization of the notion of presymplectic and
Poisson manifolds, unifying the covariant and contravariant approaches. This is achieved by endowing
the Pontryagin bundle of a manifold, which is the Whitney sum of the tangent and cotangent bundles,
with a suitable algebraic-geometric structure, called Courant algebroid [45, Definition 2.1]. In general,
Courant algebroids are the natural framework to work with Dirac structures [13, Definition 2.3.1] and
with some of its generalizations such as twisted Dirac structures [79].

1.3.1 Courant algebroids and Dirac structures

Let E → M be a vector bundle, p : E → TM a vector bundle map, 〈·, ·〉 : E × E → R a bilinear,
symmetric, and non-degenerated product form on E, and J·, ·K : Γ(E) × Γ(E) → Γ(E) an R-bilinear
bracket.

Definition 1.13. The tetrad (E, p, 〈·, ·〉, J·, ·K) is said to be a Courant algebroid whenever the following
axioms are satisfied for all f ∈ C∞(M) and η, η1, η2 ∈ Γ(E) [37, Definition 2.1]:

(CA1) Jη, Jη1, η2KK = JJη, η1K, η2K + Jη1, Jη, η2KK,

(CA2) Lp(η)〈η1, η2〉 = 〈Jη, η1K, η2〉+ 〈η1, Jη, η2K〉,

(CA3) 〈η1, Jη2, η2K〉 = 1
2 Lp(η1)〈η2, η2〉.
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Furthermore, on every Courant algebroid, the following properties also hold for all η, η′ ∈ Γ(E)
and f ∈ C∞(M) [37, Theorem 2.1]:

(CA4) Jη, fη′K = fJη, η′K + Lp(η) f · η′,

(CA5) pJη, η′K = [p(η), p(η′)].

Axiom (CA1) is the Jacobi identity for the bracket J·, ·K, written in Leibniz form. Property (CA4) is
called the Leibniz rule, and (CA5) says that p : Γ(E) → Γ(TM) is a Loday algebra morphism. Note
from (CA3) that J·, ·K is not a Lie bracket in general.

Example 1.14. Let (E, q, [·, ·]E) be a Lie algebroid, and its de Rham differential. The tetrad
(E⊕E∗, q ◦prE , 〈·, ·〉, J·, ·K) is a Courant algebroid, where prE : E⊕E∗ → E is the natural projection,

〈a⊕ α, b⊕ β〉 := α(b) + β(a), and Ja⊕ α, b⊕ βK := [a, b]E ⊕ (La β − ib α)

for all a, b ∈ Γ(E) and α, β ∈ Γ(E∗). In particular, when E = TM we obtain the standard Courant
algebroid on the Pontryagin bundle of M (see Subsection 1.3.2 below). H

As mentioned above, the failure of a Courant algebroid to be a Lie algebroid follows from the fact
that the bracket is not always skew-symmetric, since the symmetric product gives an obstruction to
this property. However, whenever we restrict the Courant algebroid structure to a subbundle in which
the symmetric product vanishes, we indeed obtain a Lie algebroid.

Let (E, p, 〈·, ·〉, J·, ·K) be a Courant algebroid. Given subbundle L ⊆ E, we denote by L⊥ ⊆ E its
〈·, ·〉-orthogonal complement,

L⊥ := {η ∈ E | 〈η, ζ〉 = 0, ∀ζ ∈ L}.

We say that L is isotropic, coisotropic, or Lagrangian, if L ⊆ L⊥, L ⊇ L⊥, or L = L⊥, respectively.
Lagrangian subbundles are also called maximally isotropic, and, because of the non-degeneracy of
〈·, ·〉, their rank must be equal to half of the rank of E (in particular, there are no maximally isotropic
subbundles if the Courant algebroid has odd rank).

Suppose we are given an isotropic subbundle L ⊂ E. By definition, the restriction of 〈·, ·〉 to L is
zero. If, in addition, the sections of L are closed under the bracket of E,

JΓ(L),Γ(L)K ⊆ Γ(L),

then the restriction [·, ·]L := J·, ·K|Γ(L)×Γ(L) is a Lie bracket. Indeed, the Jacobi identity follows from
(CA1), and the skew-symmetry is consequence of (CA3) and the isotropy of L. Furthermore, for the
restriction q := p|L : L → TM , property (CA4) implies that the Leibniz rule for [·, ·]L and q also
holds. In other words, the triple (L→M, q, [·, ·]L) is a Lie algebroid.

Therefore, each isotropic subbundle L ⊂ E whose sections are closed under the bracket on E
induces a foliation of the base manifold M , which integrates the characteristic distribution q(L). We
now restrict our attention to the case of maximally isotropic subbundles.

Definition 1.15. Let E→M be a Courant algebroid. A Dirac subbundle of E is a maximally isotropic
subbundle D ⊂ E such that the sections of D are closed under the bracket of E.
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As we have explained, Dirac structures are endowed with a Lie algebroid structure. On the other
hand, for a maximally isotropic subbundle D ⊂ E, the property of being Dirac is equivalent to

〈η, Jξ, ζK〉 = 0 ∀η, ξ, ζ ∈ Γ(D). (1.6)

Indeed, observe that this property is equivalent to Jξ, ζK ∈ Γ(D⊥) for all ξ, ζ ∈ Γ(D). Since, D is
maximally isotropic, by definition we have D⊥ = D, so Jξ, ζK ∈ Γ(D) for all ξ, ζ ∈ Γ(D).

1.3.2 Twisted Dirac structures

Let TM and T ∗M the tangent and cotangent bundles of a manifold M , respectively. Let us denote by
TM := TM ⊕ T ∗M the Pontryagin bundle of M . Observe that TM is endowed with a canonical and
non-trivial Courant algebroid structure, given as in Example 1.14. Consider the canonical projections
pTM : TM → TM and pT ∗M : TM → T ∗M , the canonical bilinear symmetric product 〈·, ·〉 : TM ×
TM → R, given by

〈X ⊕ α, Y ⊕ β〉 := α(Y ) + β(X), ∀ X ⊕ α, Y ⊕ β ∈ TM, (1.7)

and the Dorfman bracket J·, ·K : Γ(TM)× Γ(TM)→ Γ(TM) [18, eq. (2.15)], [19, p. 242],

JX ⊕ α, Y ⊕ βK := [X,Y ]⊕ (LX β − iY dα), ∀ X ⊕ α, Y ⊕ β ∈ Γ(TM). (1.8)

It is straightforward to verify that the tetrad (TM,pTM , 〈·, ·〉, J·, ·K) is a Courant algebroid, that is,
axioms (CA1)-(CA3) hold.

Dirac structures. Let M be a manifold, and TM its Pontryagin bundle. A Dirac structure on M
is simply a Dirac subbundle D ⊂ TM of the Pontryagin bundle with respect its canonical Courant
algebroid structure. Explicitly, a Dirac structure on M is a maximally isotropic subbundle D ⊂ TM
whose sections are closed with respect to the Dorfman bracket (1.8). In this case, the pair (M,D) is
sometimes called Dirac manifold [20].

Given a maximally isotropic subbundle D ⊂ TM , the condition for D to be Dirac is equivalent to

iX3 LX1 α2 + iX1 LX2 α3 + iX2 LX3 α1 = 0 ∀Xi ⊕ αi ∈ Γ(D).

This integrability condition is just (1.6) written in expanded form.
Observe that every Poisson manifold (M,Π) naturally induces a Dirac structure on M . Indeed,

DΠ := {Π]α⊕ α | α ∈ T ∗M}

is a maximally isotropic subbundle which is closed with respect to the Dorfman bracket due to the
Jacobi identity of Π. In a similar fashion, the graph

Dω := {X ⊕ (− iX ω) | X ∈ TM}

of a 2-form ω ∈ Γ(∧2T ∗M) is a maximally isotropic subbundle which is a Dirac structure if and only
if dω = 0. For a detailed explanation, we refer to Examples 1.17 and 1.18 below. Another family of
Dirac structures on M are given by regular foliations. Indeed, as we explain in Subsection 4.2.1, if F
is a regular foliation on M , then DF := TF ⊕ Ann(TF) is a Dirac structure, due to the involutivity
of TF .
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Dirac structures with background. The most important example of a Courant algebroid is the
Pontryagin bundle of a manifold endowed with the standard Dorfman bracket. However, we can
slightly twist the background by means of a closed 3-form in order to generate new Courant algebroids.

Let ψ ∈ Γ(∧3T ∗M) be a closed 3-form on M . The ψ-Dorfman bracket J·, ·Kψ : Γ(TM)×Γ(TM)→
Γ(TM) is given by

JX ⊕ α, Y ⊕ βKψ := [X,Y ]⊕ (LX β − iY dα− iY iX ψ), ∀ X ⊕ α, Y ⊕ β ∈ Γ(TM). (1.9)

We claim that the tetrad TMψ := (TM,pTM , 〈·, ·〉, J·, ·Kψ), where pTM : TM → TM is the canonical
projection, and 〈·, ·〉 is given as in (1.7), is a Courant algebroid. Indeed, axioms (CA2) and (CA3) hold
because of the skew-symmetry of ψ, and the Jacobi identity (CA1) follows from the closedness of ψ.
We call TMψ the Courant algebroid on TM with background ψ or, shortly, the ψ-Courant algebroid
on TM . For a detailed proof of the fact that TMψ is indeed a Courant algebroid, see Proposition B.5
of the Appendix.

We now recall the notion of Dirac and Poisson structures with background, which are also called
twisted structures.

Definition 1.16. A Dirac structure with background ψ or, shortly, ψ-Dirac structure on M , is a
Lagrangian subbundle D ⊆ TM such that JΓ(D),Γ(D)Kψ ⊆ Γ(D).

In other words, a ψ-Dirac structure on M is a Dirac subbundle of the Courant algebroid TMψ.
For a maximally isotropic subbundle D ⊂ TM , the integrability condition reads

iX3 LX1 α2 + iX1 LX2 α3 + iX2 LX3 α1 = ψ(X1, X2, X3), ∀Xi ⊕ αi ∈ Γ(D). (1.10)

Example 1.17 (Presymplectic structures with background). Let ω ∈ Γ(∧2T ∗M) be a 2-form on M .
Then, the graph of −ω[ : TM → T ∗M ,

Dω := {X ⊕ (− iX ω) | X ∈ Γ(TM)}

is Lagrangian. Let us describe when Dω is a ψ-Dirac structure. Fix X1, X2, X3 ∈ Γ(TM), and set
αi := − iXi ω, so that Xi ⊕ αi ∈ Γ(Dω) for all i = 1, 2, 3. Then,

iX3 LX1 α2 + iX1 LX2 α3 + iX2 LX3 α1 = −
∑

(1,2,3)

iX2 LX3 iX1 ω

= −
∑

(1,2,3)

LX3 iX2 iX1 ω + i[X2,X3] iX1 ω

= −dω(X1, X2, X3)

Because of (1.10), Dω is a ψ-Dirac structure if and only if dω + ψ = 0 [79, p. 3]. H

Example 1.18 (Poisson structures with background). Let Π ∈ Γ(∧2TM) be a 2-vector field on M .
Then, the graph of Π] : TM → T ∗M ,

DΠ := {Π]α⊕ α | α ∈ Γ(T ∗M)}
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is Lagrangian. Let us describe when DΠ is a ψ-Dirac structure. Fix α1, α2, α3 ∈ Γ(T ∗M), and set
Xi = Π]αi, so that Xi ⊕ αi ∈ Γ(DΠ) for all i = 1, 2, 3. By straightforward computations,

iX3 LX1 α2 + iX1 LX2 α3 + iX2 LX3 α1 = −
∑

(1,2,3)

Π(α1,d Π(α2, α3))− α3[Π]α1,Π
]α2]

= 1
2 [Π,Π](α1, α2, α3),

where in the last equality we have applied Lemma B.1. Because of (1.10), DΠ is a ψ-Dirac structure
if and only if 1

2 [Π,Π] = −Π]ψ [79, p. 3]. H

Definition 1.19. We say that ω ∈ Γ(∧2T ∗M) is a presymplectic form with background ψ, or, shortly,
ψ-presymplectic form, if dω+ψ = 0. Similarly, Π ∈ Γ(∧2TM) is a Poisson structure with background
ψ, or, shortly, ψ-Poisson structure, if 1

2 [Π,Π] = −Π]ψ.

As a consequence of Example 1.17, M admits ψ-presymplectic structures if and only if ψ is
cohomologically trivial. On the other hand, given a ψ-Poisson structure Π on M , the projection
pT ∗M : DΠ → T ∗M is an isomorphism which induces the Lie algebroid (T ∗M,Π], {·, ·}Π,ψ), where

{α, β}Π,ψ := LΠ]α β − iΠ]β dα− iΠ]β iΠ]α ψ, ∀α, β ∈ Γ(T ∗M). (1.11)

In terms of the closedness of the graph DΠ with respect to the ψ-Dorfman bracket, a bivector field
Π ∈ Γ(∧2TM) is ψ-Poisson if and only if

[Π]α,Π]β] = Π]{α, β}Π,ψ ∀α, β ∈ Γ(T ∗M).

Remark 1.20. In the case when ψ = 0, we recover the usual notions of presymplectic and Poisson
structures as particular cases of Dirac structures. In particular, the bracket of 1-forms of Poisson
structures is

{α, β}Π,ψ := LΠ]α β − iΠ]β dα, ∀α, β ∈ Γ(T ∗M). (1.12)

Presymplectic foliations with background. Recall that every Dirac structure is equipped with a
Lie algebroid structure, which induces a foliation on the base manifold. In the case of Dirac structures
with background, the foliation is endowed with a leaf-wise presymplectic structure with background.
The converse is also true: every presymplectic foliation with background is the characteristic foliation
of the Lie algebroid of some Dirac structure with background. This generalizes the fact that Poisson
structures are in correspondence with symplectic foliations.

Let ψ ∈ Γ(∧3T ∗M) be a background form, and consider the Pontryagin bundle TMψ equipped
with the Courant algebroid structure given by the ψ-Dorfman bracket (1.9). Let also D be a Dirac
structure. Let us denote by CD its characteristic distribution, and by S its characteristic foliation,
TS = CD. Let us define ωS ∈ Γ(∧2T ∗S) by

ωS(X,Y ) := β(X),

where X,Y ∈ Γ(TS) and β ∈ Γ(T ∗M) is such that Y ⊕ β ∈ Γ(D). We claim that ωS is well defined.
Indeed, if β′ ∈ Γ(T ∗M) is another such that Y ⊕ β′ ∈ Γ(D), then 0 ⊕ (β − β′) ∈ Γ(D). So, for any
α ∈ Γ(T ∗M) such that X ⊕ α ∈ Γ(D), we have by the isotropy of D,

0 = 〈0⊕ (β − β′), X ⊕ α〉 = β(X)− β′(X).
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This proves that the value ωS(X,Y ) is independent of the choice of β. On the other hand, since D is
isotropic, 0 = 〈X ⊕ α, Y ⊕ β〉 = α(Y ) + β(X), which implies

ωS(Y,X) = α(Y ) = −β(X) = −ωS(X,Y ),

proving that ωS is skew-symmetric.
Finally, we will show that ωS is ψ-presymplectic along the S-leaves. For a fixed leaf ι : S ↪→ M

of S, let dS be the de Rham differential of S, and ωS ∈ Γ(∧2T ∗S) the restriction of ωS to S. For
X1, X2, X3 ∈ Γ(TS), and picking αi ∈ Γ(T ∗M) such that Xi ⊕ αi ∈ Γ(D), we get

dS ωS(X1|S , X2|S , X3|S) = ι∗
∑

(1,2,3)

LX3 iX2 iX1 ωS − i[X3,X2] iX1 ωS

= ι∗
∑

(1,2,3)

iX2 LX3 iX1 ωS = −ι∗
∑

(1,2,3)

iX2 LX3 α1

= −ι∗(ψ(X1, X2, X3)) = −ι∗ψ(X1|S , X2|S , X3|S),

due to (1.10). In other words, the manifold (S, ωS) is ι∗ψ-presymplectic.
Conversely, if (S, ωS) is a foliation such that each leaf ι : S ↪→ M is ι∗ψ-presymplectic with the

structure ωS := ι∗ωS , then

DωS := {X ⊕ α ∈ TM | α|TS = − iX ωS}

is a ψ-Dirac structure, provided that DωS is smooth. We have proved the following:

Theorem 1.21. There exists a one-to-one correspondence between Dirac structures with background
and presymplectic foliations with background.

1.4 Poisson cohomology

Here, we review some basic notions in Poisson cohomology. For more details, see [21, Chapter 2], [62].
Let (M,Π) be a Poisson manifold. Because of the Leibniz rule of the Schouten-Nijenhuis bracket,

the map

Π : Γ(∧•TM)→ Γ(∧•TM)

given by Π(A) := [Π, A] is a graded derivation of degree 1. Furthermore, Π is a coboundary operator,
2
Π = 0, due to the Jacobi identities of Π and [·, ·]. Thus, the pair (Γ(∧•TM), Π) is a cochain complex,

which is called the Lichnerowicz-Poisson complex of (M,Π) [44, Section 3]. The cohomology of this
cochain complex is denoted by H•Π(M), and is called the Poisson cohomology of the Poisson manifold
(M,Π). We also use the notation Z•Π(M) and B•Π(M) for the sets of cocycles and coboundaries.

The 0-cocycles are the Casimir functions, which are the smooth functions f ∈ C∞(M) such that
its Hamiltonian vector field vanishes, Π] d f = 0, [44, Section 8], [74, p. 3]. Equivalently, a function is
Casimir if and only if it is constant along the symplectic leaves. The algebra of Casimir functions is
denoted by Casim(M,Π), and it is precisely the center of the Lie algebra (C∞(M), {·, ·}).

The 1-coboundaries are just the Hamiltonian vector fields, B1
Π(M) = Ham(M,Π), which are the

inner infinitesimal automorphisms of (C∞(M), {·, ·}), and the 1-cocycles are the infinitesimal Poisson
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automorphisms, Z1
Π(M) = Poiss(M,Π). Thus, the Poisson cohomology of degree 1, which is given by

[44, Section 8], [74, p. 3]

H1(M,Π) = Poiss(M,Π)
Ham(M,Π) ,

may be interpreted as the space of outer infinitesimal automorphisms of Π [21, Subsection 2.1.2].
Now, suppose that Ψ ∈ Γ(∧2TM) is a 2-cocycle of Π, [Π,Ψ] = 0. Then, for ε > 0, we have

[Π + εΨ,Π + εΨ] = 0 mod ε2.

Thus, the 2-cocycles are the infinitesimal deformations of the Poisson structure Π [21, Subsection
2.1.2]. In this sense, the 2-coboundaries are the trivial deformations. Indeed, if Ψ = [Π, X] for some
X ∈ Γ(TM), then

(FlεX)∗(Π + εΨ) = Π mod ε2.

Since Π is a derivation of the Poisson algebra (Γ(∧•TM),∧, [·, ·]), the space of coboundaries
B•Π(M) is an ideal of the Poisson subalgebra of cocycles Z•Π(M). Hence, the exterior product and the
Schouten-Nijenhuis bracket induce well-defined operations in cohomology, so that (H•Π(M),∧, [·, ·]) is
also a graded Poisson algebra of degree −1 [21, Remark 2.1.5] [64, p. 64]. In particular, H•Π(M) is
a module over the ring H0

Π(M) = Casim(M,Π). Therefore, if there exists a non-constant Casimir
function, and Hk

Π(M) 6= {0}, then Hk
Π(M) is infinite-dimensional over R (regardless of the topological

properties of the manifold).
By using the fact that Poisson manifolds induce a Lie algebroid, one can find a Koszul’s type

formula for the coboundary operator of the Lichnerowicz-Poisson complex. In fact, recall that the
cotangent bundle of a Poisson manifold is a Lie algebroid, which induces a cochain complex structure
on the exterior algebra of its dual bundle. It turns out that this cochain complex is precisely the
Lichnerowicz-Poisson complex. More precisely, given a Poisson manifold (M,Π) and its cotangent Lie
algebroid (T ∗M,Π], {·, ·}Π), the coboundary operator Π of the Lichnerowicz-Poisson complex can be
computed on A ∈ Γ(∧kTM) and α1, . . . , αk+1 ∈ Γ(T ∗M) as follows [5]:

ΠA(α1, . . . , αk+1) :=
∑

σ∈S(1,k)

(−1)σ LΠ]ασ1
(A(ασ2 , . . . , ασk+1

))−
∑

σ∈S(2,k−1)

(−1)σA({ασ1 , ασ2}Π, . . . , ασk+1
).

As a consequence of this fact, the map Π] : Γ(∧•T ∗M) → Γ(∧•TM) is a cochain complex morphism
between the Lichnerowicz-Poisson and the de Rham complexes. In particular, we have a well-defined
map induced in cohomology,

(Π])∗ : H•dR(M)→ H•Π(M).

Example 1.22 (Symplectic manifolds). On a symplectic manifold (M,ω), the map Π]
ω : T ∗M → TM

is an isomorphism, with inverse map −ω[. Therefore, the Lichnerowicz-Poisson complex is isomorphic
to the de Rham complex of M . H

Example 1.23. Let N be any manifold endowed the zero Poisson bracket, (M,ω) a symplectic
manifold, and M × N the product Poisson manifold. Then, (the lift of) every multivector field
A ∈ Γ(∧•TN) on N is a cocycle on M ×N . H
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Example 1.24 (The Poisson manifold sl∗(2)). Consider M = R3 endowed with the Poisson structure

Π := x1 ∂
∂x2 ∧ ∂

∂x3 + x2 ∂
∂x3 ∧ ∂

∂x1 − x3 ∂
∂x1 ∧ ∂

∂x2 .

Then, k(x) := (x1)2 + (x2)2 − (x3)2 is a Casimir function. Now, let f : R→ R be given by

f(t) :=

{
e−1/t2 if t > 0,
0 otherwise,

and K ∈ C∞(M) by K := f ◦ k. Then, the vector field Z ∈ Γ(TM) given by

Z := x1 K(x)
(x1)2+(x2)2

∂
∂x1 + x2 K(x)

(x1)2+(x2)2
∂
∂x2

is an infinitesimal Poisson automorphism [52, p. 74]. Moreover, it is not Hamiltonian since it is not
tangent to the symplectic foliation at each (x1, x2, x3) with (x3)2 < (x1)2 + (x2)2. Therefore, H1

Π(M)
is infinite dimensional. Furthermore,

H1
Π(M)/R ∼= {f ◦ k ∈ C∞(M) | f ∈ C∞(R) is flat at 0}.

The article [54] is devoted to the proof of this result. H

Figure 1.1: The characteristic foliation of sl∗(2) consists of one- and two-sheeted hyperboloids, the
upper and lower portions of the cone, and the origin as zero-dimensional leaf.

Example 1.25 (The Poisson manifold so∗(3)). Let M = R3 be endowed with the Poisson structure

Π := x1 ∂
∂x2 ∧ ∂

∂x3 + x2 ∂
∂x3 ∧ ∂

∂x1 + x3 ∂
∂x1 ∧ ∂

∂x2 .

For k(x) := (x1)2 + (x2)2 + (x3)2, we have Casim(M,Π) = {f ◦ k | f ∈ C∞(R)}. Therefore, H0
Π(M) is

infinite-dimensional. However, since so∗(3) is a Lie algebra which is semi-simple and of compact type,
one must have [12, Theroem 4.1]

H1
Π(M) = {0}

(see also [53, Theorem 1.2]). To see this, observe that the symplectic foliation consists of spheres
centered at the origin with different symplectic areas. Thus, infinitesimal Poisson automorphisms
must be tangent to the symplectic foliation. Since the sphere is simply connected, such vector fields
must be Hamiltonian. H
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Figure 1.2: The characteristic foliation of so∗(3) consists of concentric spheres at the origin, and the
origin itself as zero-dimensional leaf.

Example 1.26. On M = R3, consider the Lie-Poisson structure

Π := ∂
∂x3 ∧

(
x1 ∂

∂x1 + x2 ∂
∂x2

)
.

The following vector fields

Z1 =
∂

∂x1
, Z2 = x2

∂

∂x2
− x3

∂

∂x3
, Z3 = x3

∂

∂x2
, Z4 = x2

∂

∂x3

are generators of the first Poisson cohomology (see Section 5.8). Therefore,

H1
Π(M) ∼= R× sl(2,R)

as a Lie algebra [71, Example 7.1]. H

Figure 1.3: The Lie-Poisson structure described in Example 1.26 has characteristic foliation of
open-book type. The two-dimensional leaves are half-planes whose boundary is the z-axis, which
each of its points is a zero-dimensional leaf.
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Cohomology of Poisson structures with background. Let ψ ∈ Γ(∧3T ∗M) be a closed 3-form
on the manifold M , and Π ∈ Γ(∧2TM) a ψ-Poisson structure, 1

2 [Π,Π] = −Π]ψ. The corresponding
Lie algebroid is (T ∗M,Π], {·, ·}Π,ψ), where

{α, β}Π,ψ := LΠ]α β − iΠ]β dα− iΠ]β iΠ]α ψ, ∀α, β ∈ Γ(T ∗M).

The de Rham differential Π,ψ : Γ(∧•TM) → Γ(∧•TM) is Π,ψ = Π + jΠ,ψ, where Π := adΠ is
the usual adjoint operator of Π with respect to the Schouten-Nijenhuis bracket of Γ(∧•TM), and
jΠ,ψ : Γ(∧•TM)→ Γ(∧•TM) is given on A ∈ Γ(∧kTM) and α1, . . . , αk+1 ∈ Γ(T ∗M) by

jΠ,ψ A(α1, . . . , αk+1) := −
∑

σ∈S(2,k−1)

(−1)σA(iΠ]ασ1
iΠ]ασ2

ψ, ασ3 , . . . , ασk+1
). (1.13)

There is a nice description of jΠ,ψ as the insertion of a 1-form-valued bivector. In fact, define

Q ≡ QΠ,ψ ∈ Γ(∧2TM ⊗T ∗M) by Q(α, β,X) := −ψ(Π]α,Π]β, Y ). Then, the right-hand side of (1.13)
is simply the insertion iQA evaluated on (α1, . . . , αk+1). In other words, jΠ,ψ = iQΠ,ψ

.

The 0-coboundaries are such f ∈ C∞(M) satisfying Π] d f = 0. In other words, Z0
Π,ψ(M) =

H0
Π,ψ(M) consists of the functions which are constant along the ψ-symplectic leaves. The 1-cocycles

X ∈ Z1
Π,ψ(M) are those X ∈ Γ(TM) such that

[Π, X](α, β)−X(iΠ]α iΠ]β ψ) = 0 ∀α, β ∈ Γ(T ∗M).

This is equivalent to [X,Π] = Π] iX ψ.
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Chapter 2

The Coupling Method and Semilocal Poisson Geometry

In this chapter, we give a brief review of the coupling method for Poisson and Dirac structures on
foliated manifolds. In Section 2.1, we describe the coupling method in the category of vector spaces.
Sections 2.2-2.3 are devoted to the description of the geometric structures which appear in the context
of the coupling method, such as Poisson foliations, connections, and curvature. The coupling method
on foliated manifolds is described in Section 2.4. Finally, in Section 2.5 we apply the coupling method
to describe Poisson geometry around symplectic leaves.

2.1 The coupling method in the vector space category

Let W be a finite dimensional vector space, and W ∗ its dual space. Denote W := W ⊕W ∗. Consider
the canonical projections pW : W → W , pW ∗ : W → W ∗, and the bilinear symmetric pairing 〈·, ·〉 on
W given by

〈X ⊕ α, Y ⊕ β〉 := α(Y ) + β(X), ∀X,Y ∈W,α, β ∈W ∗.

Consider a subspace L ⊆W. The orthogonal complement L⊥ of L with respect to 〈·, ·〉 is

L⊥ := {η ∈W | 〈η, ζ〉 = 0, ∀ζ ∈ L}.

We say that L is isotropic, coisotropic, or Lagrangian if L ⊆ L⊥, L ⊇ L⊥, or L = L⊥, respectively.
Lagrangian subspaces are also called maximally isotropic, and their dimension equals to the one of W .
Given an isotropic subspace L ⊂ W, the characteristic subspace CL ⊆ W is given by CL := pW (L).
An example of a Lagrangian subspace is the graph of a bivector Π ∈ ∧2W , given by Graph(Π]) :=
{Π]α ⊕ α | α ∈ W ∗}. A maximally isotropic subspace D is the graph of a bivector if and only if
D ∩ (W ⊕ {0}) = {0}.

Now, consider a fixed subspace V ⊆W , and denote by

V ◦ := Ann(V ) = {α ∈W ∗ | α(v) = 0 ∀v ∈ V }

its annihilator. Also, denote V := V ⊕ V ◦ ⊂W.

Definition 2.1. Let D ⊂ W be a maximally isotropic subspace. We say that D is a coupling space
on (W,V ), or, shortly, a V -coupling subspace if

D ⊕ V = W.

If D is a maximally isotropic subspace, then dimD + dimV = dimW for any subspace V ⊂ W .
Therefore, D is V -coupling if and only if D ∩ V = {0}.

33
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Definition 2.2. A triple (P, γ, σ) of geometric data on (W,V ) consists of a bivector P ∈ ∧2V ; a
linear map γ : W →W such that im(γ) = V , and γ2 = γ; and a 2-form σ ∈ ∧2V ◦.

The goal of this part is to show the existence of a one-to-one correspondence between V -coupling
subspaces of W and geometric data on (W,V ). To do so, we need some preliminary constructions.

Given a Lagrangian subspace D ⊂ W, let us define the subspaces H ≡ H(D,V ) ⊂ W and
A ≡ A(D,V ) ⊂W ∗ by

H(D,V ) := {X ∈W | ∃α ∈ V ◦ : X ⊕ α ∈ D} = pW (D ∩ (W ⊕ V ◦)), (2.1)

A(D,V ) := {µ ∈W ∗ | ∃v ∈ V : v ⊕ µ ∈ D} = pW ∗(D ∩ (V ⊕W ∗)). (2.2)

Observe that A ⊆ Ann(H). Indeed, for µ ∈ A and X ∈ H, there exist v ∈ V and α ∈ V ◦ such
that v ⊕ µ,X ⊕ α ∈ D. Taking into account that α(v) = 0 and the isotropy of D, we get

0 = 〈v ⊕ µ,X ⊕ α〉 = µ(X).

Since X ∈ H is arbitrary, µ ∈ Ann(H), as claimed. This property is stronger in the coupling case.

Lemma 2.3. For the Lagrangian subspace D ⊂W, the following assertions are equivalent:

(a) D is V -coupling.

(b) H ⊕ V = W .

(c) V ◦ ⊕A = W ∗.

In this case, Ann(H) = A.

See Lemma A.1 of the Appendix for a detailed proof.
Given a linear map γ : W → W such that γ2 = γ and im γ = V , denote Hγ := ker γ ⊂ W , and

Aγ := im γ∗ ⊂W ∗. Then, it follows that Aγ = Ann(Hγ).

Proposition 2.4. There exists a one-to-one correspondence between V -coupling Lagrangian subspaces
D ⊂W and geometric data (P, γ, σ) on (W,V ).

Proof. Given some geometric data (P, γ, σ), the subspace DP,γ,σ ⊆W given by

DP,γ,σ := {(P ]µ+X)⊕ (µ− iX σ) | X ∈ Hγ , µ ∈ Aγ} = Graph(P ]|Aγ )⊕Graph(−σ[|Hγ )

is Lagrangian and V -coupling, due to Lemma A.2 of the Appendix. Conversely, each V -coupling
Lagrangian subspace D ⊂ W induces a triple (PD, γD, σD) of geometric data given as follows: the
linear map γD : W → W is the projection over V along the splitting H ⊕ V = W of Lemma 2.3 (b);
the bivector PD ∈ ∧2V and the 2-form σD ∈ ∧2V ◦ are defined by the following relations:

P ]Dµ⊕ µ ∈ D, ∀µ ∈ A, X ⊕ (− iX σD) ∈ D, ∀X ∈ H.

The fact that PD and σD are well defined follows from Lemma A.3. Finally, the proof of the fact that
this correspondence is one to one is given in Proposition A.4 of the Appendix. �

Definition 2.5. Given a V -coupling Lagrangian subspace D ⊂ W, we say that (P, γ, σ) given by
Proposition 2.4 is the geometric data associated with D.
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Let Π ∈ ∧2W be a bivector. Since the graph Graph(Π]) of Π is a maximally isotropic subspace of
W, it is natural to find conditions for which Graph(Π]) is V -coupling.

Proposition 2.6. The graph Graph(Π]) of a bivector Π ∈ ∧2W is V -coupling if and only if

Π](V ◦)⊕ V = W.

Moreover, if (P, γ, σ) is the geometric data associated with a V -coupling Lagrangian subspace D ⊆W,
then D is the graph of a bivector if and only if kerσ[ = V .

Proof. For DΠ := Graph(Π]), one has

H(DΠ, V ) = {X ∈W | X ⊕ α ∈ DΠ, α ∈ V ◦} = {Π]α | α ∈ V ◦} = Π](V ◦).

By Lemma 2.3, we have that DΠ is V -coupling if and only if Π](V ◦) ⊕ V = W . Now, if (P, γ, σ) is
some geometric data and D is the corresponding V -coupling subspace, then

D ∩ (W ⊕ {0}) = {(X + P ]µ)⊕ (µ− iX σ) | X ∈ Hγ , µ ∈ Aγ , µ− iX σ = 0}
= {X ⊕ 0 | X ∈ Hγ , iX σ = 0} = ker(σ[|Hγ )⊕ {0}.

Thus, D is the graph of a bivector if and only if ker(σ[|Hγ ) = {0}. Since Hγ⊕V = TM , and V ⊆ kerσ[,
we conclude that the condition for D to be the graph of a bivector is equivalent to kerσ[ = V . �

2.2 Generalities on foliations and connections

For the purposes of this work, we are interested in the application of our previous description of
coupling structures on vector spaces to the smooth category. More precisely, we apply our previous
characterization to Dirac structures on foliated manifolds. In this sense, we need to review some
basics on regular foliations, as well as some other structures that interrelate to describe the geometry
of coupling structures, such as Ehresmann connections.

Regular foliations. Suppose we are given a regular foliation V on M , and let V := TV be the
tangent bundle of V. A multivector field A ∈ Γ(∧•TM) on the foliated manifold (M,V) is said to
be leaf-tangent if A ∈ Γ(∧•V ). Since V is involutive, the Schouten-Nijenhuis bracket of leaf-tangent
multivector fields is again leaf-tangent. This implies that Γ(∧•V ) is a graded Poisson subalgebra of
the algebra of multivector fields.

A vector field u ∈ Γ(TM) is said to be an infinitesimal automorphism of (M,V), or, shortly,
V-projectable, if [u, Y ] ∈ Γ(V ) for all Y ∈ Γ(V ). The set of V-projectable vector fields will
be denoted by aut(M,V). Algebraically, aut(M,V) is the normalizer of the Lie subalgebra of
leaf-tangent vector fields Γ(V ), so aut(M,V) is an R-Lie algebra containing Γ(V ). As a consequence,
[aut(M,V),Γ(∧•V )] ⊆ Γ(∧•V ). It is important to remark that, for any regular foliation V, the tangent
bundle TM is locally finitely generated by V-projectable vector fields.

Denote by V ◦ := Ann(V ) the annihilator of the tangent bundle of V. Then, Γ(∧•V ◦) is the exterior
subalgebra of differential forms which vanish if any of its arguments is leaf-tangent. Moreover, the
algebra of V-projectable vector fields preserves Γ(∧•V ◦), in the sense that Lu α ∈ Γ(∧•V ◦) for all
u ∈ aut(M,V) and α ∈ Γ(∧•V ◦). Finally, note that Γ(∧•V ◦) is not a cochain subcomplex of the
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de Rham complex of M . In fact, the involutivity of V is equivalent to iY dα ∈ Γ(∧•V ◦) for all
α ∈ Γ(∧•V ◦) and Y ∈ Γ(V ).

The contravariant analog of the V-projectable vector fields are the basic differential forms. A
k-form α ∈ Γ(∧kV ◦) is said to be basic if dα ∈ Γ(∧k+1V ◦). The R-space of basic k-forms is denoted
by Γb(∧kV ◦). It is clear that Γb(∧•V ◦) :=

⊕
k∈Z Γb(∧kV ◦) is a subalgebra of the differential forms

with the exterior product, and a subcomplex of the de Rham complex (Γ(∧•T ∗M), d). Furthermore,
for all u ∈ aut(M,V), and α ∈ Γb(∧•V ◦), we have iu α ∈ Γb(∧•V ◦). In particular, the algebra
Γb(∧•V ◦) of basic forms is preserved by the V-projectable vector fields,

Lu α ∈ Γb(∧•V ◦), ∀u ∈ aut(M,V), α ∈ Γb(∧•V ◦).

For any regular foliation V, the basic forms locally generate Γ(∧•V ◦).
Associated with a foliation V on M , the algebra of leaf-wise differential forms is Γ(∧•V ∗). The

leaf-tangent multivector fields naturally act on Γ(∧•V ∗) by insertion, and for each µ ∈ Γ(∧kV ∗) and
u ∈ aut(M,V), the Lie derivative Lu µ is well defined by the standard formula

Lu µ(Y1, . . . , Yk) := Lu(µ(Y1, . . . , Yk))−
k∑
i=1

µ(Y1, . . . , [u, Yi], . . . , Yk), ∀Yi ∈ Γ(V ).

Moreover, the foliated exterior derivative dV : Γ(∧•V ∗)→ Γ(∧•V ∗), is defined on µ ∈ Γ(∧kV ∗) by

dV µ(Y1, . . . , Yk+1) :=
∑

σ∈S(1,k)

(−1)σ LYσ1
(µ(Yσ2 , . . . , Yσk+1

))−
∑

σ∈S(2,k−1)

(−1)σµ([Yσ1 , Yσ2 ], Yσ3 , . . . , Yσk+1
)

for all Y1, . . . , Yk+1 ∈ Γ(V ). This is a graded derivation of degree 1 and a coboundary operator, d2
V = 0.

The cochain complex (Γ(∧•V ∗),dV) is called the foliated de Rham complex. It is immediate to see
that the foliated de Rham complex is precisely the de Rham complex of the tangent Lie algebroid
(V, ι, [·, ·]V ), where ι : V → TM is the natural inclusion, and [·, ·]V the restriction of the Lie bracket to
the leaf-tangent vector fields (see Example 1.7). Its cohomology is called foliated de Rham cohomology
and denoted by H•dR(V).

The Frölicher-Nijenhuis bracket. Consider the Cartan’s algebra Γ(∧•T ∗M) with the exterior
product ∧. Recall that, for each vector-valued form K ∈ Γ(∧kT ∗M ⊗ TM), one has the graded
derivation iK of Γ(∧•T ∗M) given on α ∈ Γ(∧pT ∗M) and X1, . . . , Xp+k−1 ∈ Γ(TM) by

iK α(X1, . . . , Xp+k−1) :=
∑

σ∈S(k,p−1)

(−1)σα(K(Xσ1 , . . . , Xσk), Xσk+1
, . . . , Xσp+k−1

).

The graded derivation iK has degree k−1 and is called the insertion of K. Similarly, if α ∈ Γ(∧pT ∗M⊗
TM), we define iK α ∈ Γ(∧p+k−1T ∗M ⊗ TM) by the formula in above.

On the other hand the vector-valued form K ∈ Γ(∧kT ∗M ⊗ TM) induces the graded derivation
LK of degree k, defined in terms of the graded commutator with the exterior differential d,

LK := [iK , d] = iK ◦ d +(−1)k d ◦ iK .

The graded derivation LK is called the Lie derivative along K. Moreover, because of the Jacobi
identity of the graded commutator, it follows that [LK ,d] = 0. Also, LK = [iK , d] = 0 if and only if
K = 0.
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It can be shown that every graded derivation of the Cartan’s algebra is the sum of a Lie derivative
and a insertion of vector-valued forms. More precisely,

Theorem 2.7 (Frölicher-Nijenhuis). Let D : Γ(∧•T ∗M) → Γ(∧•T ∗M) be a derivation of degree k.
There exist unique vector-valued forms K ∈ Γ(∧kT ∗M ⊗ TM), L ∈ Γ(∧k+1T ∗M ⊗ TM) such that

D = LK + iL .

The proof of this fact can be found in [35, Subsection 8.3].

The Frölicher-Nijenhuis theorem, and the fact that the correspondence K 7→ LK is injective,
implies that the only graded derivations commuting with the exterior differential are Lie derivatives,

[D,d] = 0⇔ D = LK .

As a consequence, we have the following fact: given K ∈ Γ(∧kT ∗M ⊗TM) and L ∈ Γ(∧lT ∗M ⊗TM),
the graded derivation [LK ,LL] of degree k+ l commutes with d, due to the Jacobi identity. Therefore,
[LK ,LL] must be a Lie derivative. In other words, there exists a unique vector-valued form [K,L]FN ∈
Γ(∧k+lT ∗M ⊗ TM) such that

L[K,L]FN = [LK ,LL].

This defines an R-bilinear operation

[·, ·]FN : Γ(∧•T ∗M ⊗ TM)× Γ(∧•T ∗M ⊗ TM)→ Γ(∧•T ∗M ⊗ TM),

called the Frölicher-Nijenhuis bracket. Because of the definition of the Frölicher-Nijenhuis bracket,
the Lie derivative is a faithful representation of the vector-valued forms on the algebra of graded
derivations with the graded commutator. In particular, the Frölicher-Nijenhuis bracket is a graded
Lie bracket on Γ(∧•T ∗M ⊗ TM) of degree zero.

We now present some properties regarding the Frölicher-Nijenhuis bracket. For more details, see
[35, Section 8].

Lemma 2.8. Let K ∈ Γ(∧kT ∗M ⊗ TM) and L ∈ Γ(∧lT ∗M ⊗ TM) be vector-valued forms. Then,

[LK , iL] = i[K,L]FN −(−1)kl LiLK .

In the case when K,L ∈ Γ(∧1T ∗M ⊗ TM), we have for X,Y ∈ Γ(TM) that

[K,L]FN (X,Y ) = [KX,LY ]− [KY,LX]− L([KX,Y ]− [KY,X])

−K([LX, Y ]− [LY,X]) + (LK +KL)[X,Y ].

Connections. Following [35, Section 8.13], recall that a connection form on M is a vector-valued
1-form γ ∈ Γ(T ∗M ⊗ TM) corresponding to a vector bundle map γ : TM → TM such that γ2 = γ.
If we denote Hγ := ker(γ), and V γ := im(γ), then we have

Hγ ⊕ V γ = TM. (2.3)
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In this case, Hγ and V γ are said to be the horizontal and vertical distributions of γ, respectively. The
curvature Rγ ∈ Γ(∧2T ∗M ⊗ V γ) and the cocurvature Sγ ∈ Γ(∧2T ∗M ⊗Hγ) of γ are

Rγ(X,Y ) := γ[(Id−γ)X, (Id−γ)Y ], Sγ(X,Y ) = (Id−γ)[γX, γY ], ∀X,Y ∈ Γ(TM),

which are the obstructions to the integrability of the distributions Hγ and V γ , respectively.
Due to Lemma 2.8, the curvature and cocurvature of γ are related with the Frölicher-Nijenhuis

bracket by

1
2 [γ, γ]FN = Rγ + Sγ .

Splitting (2.3) induces γ-dependent bigradings of the exterior algebras of multivector fields and
differential forms on M . To see this, denote ∧p,qTM := ∧pHγ ⊗∧qV γ and ∧p,qT ∗M := ∧p Ann(V γ)⊗
∧q Ann(Hγ), where Ann(Hγ) and Ann(V γ) are the annihilators of Hγ and V γ , respectively. Then,

Γ(∧•TM) =
⊕
p,q∈Z

Γ(∧p,qTM), Γ(∧•T ∗M) =
⊕
p,q∈Z

Γ(∧p,qT ∗M). (2.4)

For a multivector field A, the term of bidegree (p, q) in decomposition (2.4) is denoted by Ap,q. We
follow same notation for differential forms. In a similar manner, we have a bigraded decomposition
for any linear operator on these exterior algebras. For instance, and as a consequence of Proposition
C.4 of the Appendix, the exterior differential splits as d = dγ2,−1 + dγ1,0 + dγ0,1 + dγ−1,2.

Connections on foliated manifolds. Suppose we are given a regular foliation V on M , and denote
V := TV. A connection on the foliated manifold (M,V) is a connection γ on M such that V γ = V .
In this case, the horizontal distribution H := ker γ is a subbundle normal to V, H ⊕ TV = TM .
Furthermore, it follows from the involutivity of V that the cocurvature of γ is trivial, Sγ = 0. This
implies the following relation between γ, its curvature Rγ , and the Frölicher-Nijenhuis bracket:

Rγ = 1
2 [γ, γ]FN . (2.5)

By Corollary C.6, d = dγ2,−1 + dγ1,0 + dγ0,1, and (dγ0,1)2 = 0. Here, dγ1,0 is the covariant exterior derivative
of γ, and dγ2,−1 = − iRγ . Furthermore, dγ0,1 corresponds to the foliated exterior derivative introduced
in Section 2.2. More precisely, the natural inclusion of the V-leaves in M induces a cochain complex
isomorphism, (Γ(∧•V ∗), dV) ∼= (Γ(∧•H◦),dγ0,1).

Now, observe that (Id−γ) ∈ Γ(V ◦⊗TM) can be viewed as a map (Id−γ) : TM → TM such that

(Id−γ) aut(M,V) = Γ(Hγ) ∩ aut(M,V).

To see this, fix u ∈ aut(M,V). Since im(γ) = Γ(V ) ⊆ aut(M,V), one has (Id−γ)u = u− γ(u), which
is the difference of elements in aut(M,V). Hence, (Id−γ)u ∈ Γ(Hγ) ∩ aut(M,V).

Remark 2.9. For an arbitrary regular foliation V, global V-projectable vector fields transversal to
V do not necessarily exist. Therefore, given a connection γ on (M,V), the γ-horizontal V-projectable
vector fields aut(M,V) ∩ Γ(Hγ) are considered as local vector fields. Of course, if the foliation V is
given by the fibers of a submersion π : M → B, then the horizontal lifts horγ(u) of u ∈ Γ(TB) are
V-projectable, horγ(u) ∈ aut(M,V) ∩ Γ(Hγ).

Finally, we say that a connection γ on (M,V) is flat if the horizontal distribution Hγ is involutive,
Rγ = 0. In this case, d = dγ0,1 + dγ1,0, where dγ0,1 and dγ1,0 are graded commutative coboundary operators
corresponding to the foliated exterior derivatives of V and the foliation H integrating Hγ , TH = Hγ .
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2.3 Geometric data

Roughly speaking, a Poisson foliation is a regular foliation such that each leaf is endowed with a
Poisson structure varying smoothly from leaf to leaf. Contrary to the case of leaf-wise differential
forms, a leaf-wise multivector field defines a global leaf-tangent multivector field whose restriction to
the leaves coincides with the leaf-wise one.

Definition 2.10. A Poisson foliation is a triple (M,V, P ), where V is a regular foliation on M , and
P is a leaf-tangent Poisson structure: [P, P ] = 0, and P ∈ Γ(∧2TV).

Given a Poisson foliation (M,V, P ), the Hamiltonian vector fields of P are leaf-tangent, P ] d f ∈
Γ(TV) for all f ∈ C∞(M). Therefore, the symplectic leaves of P are contained in the leaves of V. On
the other hand, the infinitesimal Poisson automorphisms of P can be transversal to the foliation V.
In particular, this occurs whenever a Poisson foliation admits a Poisson connection.

Definition 2.11. A Poisson connection γ on the Poisson foliation (M,V, P ) is a connection on
(M,V) such that P is γ-parallel.

The γ-parallel condition for P can be expressed in infinitesimal terms as Γ(Hγ) ∩ aut(M,V) ⊆
Poiss(M,P ). In other words, the γ-horizontal V-projectable vector fields are Poisson,

Lu P = 0 ∀u ∈ Γ(Hγ) ∩ aut(M,V).

Denote by Aγ := Ann(Hγ) the annihilator of Hγ . Then, for arbitrary elements in Γ(Hγ), the condition
for γ to be Poisson on (M,V, P ) becomes

LX P (µ, ν) = 0 ∀X ∈ Γ(Hγ), µ, ν ∈ Γ(Aγ).

Example 2.12 (Regular Poisson structures). A Poisson structure Π such that the map Π] : TM →
T ∗M is of locally constant rank is said to be regular. In this case, the symplectic foliation (S, ωS) can
be considered as a very special Poisson foliation (M,S,ΠωS ), such that ΠωS is leaf-wise symplectic.
If such Poisson foliation admits a Poisson connection, then Π is said to be transversally constant [62,
pp. 959-960], [64, pp. 49-50]. H

An special class of Poisson foliations are, of course, Poisson fibrations.

Definition 2.13. A Poisson fibration is a pair (E
π→ M,P ) in which π is a surjective submersion

and P ∈ Γ(∧2V ) is a vertical Poisson structure. Given two Poisson fibrations (E1
π1→ M,P1), and

(E2
π2→ M,P2) over M , a morphism of Poisson fibrations is a Poisson map φ : (E1, P1) → (E1, P1)

such that π2 ◦ φ = π1. A Poisson fibration (E
π→ M,P ) is said to be locally trivial if there exists a

Poisson manifold (N,Υ), and an open cover U of M such that, for all U ∈ U , π−1(U) and U ×N are
isomorphic as a Poisson foliations. If the open cover can be chosen as U = {M}, then the Poisson
fibration (E

π→M,P ) is said to be trivial.

Example 2.14 (Lie-Poisson bundles). Let (A → M, q, [·, ·]A) be a transitive Lie algebroid. The
isotropy bundle I := ker(q) has constant rank and hence is a vector subbundle of A. Furthermore,
because of the Leibniz rule, Γ(I) is closed with respect to [·, ·]A. Moreover, the restriction [·, ·]I :=
[·, ·]A|Γ(I)×Γ(I) is C∞(M)-linear. So, one can think of (I → M, [·, ·]I) as a bundle of Lie algebras.
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Therefore, the coisotropy bundle E := I∗ is a fiber-wise linear Poisson fibration over M . The fiber-wise
linear Poisson structure P is defined as in (1.4), viewing I as a Lie algebroid. Furthermore, in this
case (E

π→M,P ) is a Poisson fibration. Indeed, since the anchor of I is zero, we get that P ] dπ∗f = 0
for all f ∈ C∞(M), which implies that P ∈ Γ(∧2V ). Since P is fiber-wise linear, (E

π→ M,P ) is in
this case a Lie-Poisson bundle. Conversely, every Lie-Poisson bundle is the dual of a bundle of Lie
algebras. H

Example 2.15. Let P
p→M be a principal G-bundle. Then, A := TP/G is a transitive Lie algebroid

(see Example 1.9). The isotropy bundle is I = P ×G g, where g is the Lie algebra of G, together with
the adjoint action. This is a vector bundle over M , which is locally trivial as a bundle of Lie algebras
with typical fiber g. Therefore, the coisotropy bundle E := I∗ is locally trivial as a Lie-Poisson
bundle. H

It is clear that trivial Poisson fibrations are endowed with a Poisson connection. Furthermore, this
is also true for locally trivial Poisson fibrations.

Example 2.16 (Trivial Poisson fibrations). Let M be a manifold, (N,Υ) a Poisson manifold, and
consider the corresponding trivial Poisson fibration (M ×N,P ). Consider also the tangent bundle to
the foliation F := {M ×{n} | n ∈ N} as the horizontal distribution of a connection γ on (M ×N,P ).
It is clear that γ is a flat Poisson connection. H

Example 2.17 (Locally trivial Poisson fibrations). Every locally trivial Poisson fibration admits a
Poisson connection. In fact, let (E

π→M,P ) be a locally trivial Poisson fibration, and U an open cover
of M satisfying the triviality condition. For each U ∈ U , denote by γU the Poisson connection defined
on the trivial Poisson fibration π−1(U). Given a partition of unity {ρU : U ∈ U} on M subordinated
to U , it follows that γ :=

∑
U∈U π

∗ρUγU is a Poisson connection on E. This follows from the facts
that

∑
U∈U ρU = 1 and π∗f ∈ Casim(E,P ) for all f ∈ C∞(M). H

Example 2.18 (Coisotropy bundles). Let (A → M, q, [·, ·]A) be a transitive Lie algebroid, and let
I := ker(q) be the isotropy bundle. As explained above, the coisotropy bundle E := I∗ is a Lie-Poisson
bundle, endowed with a fiber-wise linear and vertical Poisson structure P . Consider any subbundle
H ⊂ A complementary to I, H ⊕ I = A. We claim that H induces a linear Poisson connection on
(E

π→M,P ). Since A is transitive, rankH = rankA− rank I = rank = rankTM , which implies that
q|H : H → TM is an isomorphism of vector bundles. Let h : TM → H be the inverse of q|H . Now,
consider the map

∇ : TM × I → I,

(u, a) 7→ ∇ua := [h(u), a]A.

Since q is a Lie algebra morphism and q(a) = 0, it follows that q([h(u), a]A) = 0, so ∇ is well defined.
Furthermore, by the Leibniz rule,

∇fua = [h(fu), a] = [fh(u), a] = f [h(u), a]− Lq(a) f · h(u) = f [h(u), a] = f∇ua,
∇u(fa) = [h(u), fa] = f [h(u), a] + Lq(h(u)) f · a = f∇ua+ Lu f · a,

which means that ∇ is a linear connection on I. Furthermore, the dual connection ∇ : TM ×E → E
is a Poisson connection on (E

π→ M,P ). In fact, for each a ∈ Γ(I), consider the linear function
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ϕa : E → R given by ϕaα := α(aπ(α)). Then, for each u ∈ Γ(TM), the horizontal lift hor∇(u) with
respect to such dual connection is given by

Lhor∇(u) ϕa = ϕ∇ua, ∀a ∈ Γ(I).

Now, fix u ∈ TM , a, b ∈ I. By the Jacobi identity of [·, ·]A,

∇u[a, b]A = [h(u), [a, b]A]A = [[h(u), a]A, b]A + [a, [h(u), b]A]A = [∇ua, b]A + [a,∇ub]A.

By applying ϕ on both sides and using the fact that P (dϕa,dϕb) = ϕ[a,b]A , we get

Lhor∇(u)(P (dϕa, dϕb)) = P (d Lhor∇(u) ϕa, dϕb) + P (dϕa,d Lhor∇(u) ϕb).

Therefore, hor∇(u) ∈ Poiss(E,P ) for all u ∈ Γ(TM), proving that ∇ is a Poisson connection. H

Curvature. Given a Poisson connection γ on a Poisson foliation (M,V, P ), the curvature Rγ ∈
Γ(∧2T ∗M ⊗ V ) takes values in infinitesimal Poisson automorphisms,

Rγ(X,Y ) ∈ Γ(V ) ∩ Poiss(M,P ), ∀X,Y ∈ aut(M,V).

To see this, fix X,Y ∈ Γ(Hγ) ∩ aut(M,V). Since aut(M,V) ∩ Poiss(M,P ) is a Lie algebra, one has
[X,Y ] ∈ aut(M,V) ∩ Poiss(M,P ). On the other hand, since (Id−γ) maps aut(M,V) to Γ(Hγ) ∩
aut(M,V), one has (Id−γ)[X,Y ] ∈ Γ(Hγ) ∩ aut(M,V) ⊆ Poiss(M,P ). Therefore, Rγ(X,Y ) can be
expressed as the difference of infinitesimal Poisson automorphisms, as follows:

Rγ(X,Y ) = [X,Y ]− (Id−γ)[X,Y ] ∈ Poiss(M,P ).

A more special situation is when the curvature of a Poisson connection takes values in Hamiltonian
vector fields.

Definition 2.19. Let γ be a Poisson connection on (M,V, P ). We say that the curvature Rγ of γ is
locally Hamiltonian if there exists a closed 3-form Θ ∈ Γ(∧3T ∗M) such that

Rγ(X,Y ) = −P ] iY iX Θ, ∀X,Y ∈ Γ(TM).

In this case, we say that Rγ is locally Hamiltonian via Θ. If, in addition, Θ = dσ for some σ ∈
Γ(∧2V ◦), then Rγ is called Hamiltonian, and σ is said to be the Hamiltonian form of Rγ.

Clearly, if the curvature Rγ of γ is Hamiltonian, then Rγ is locally Hamiltonian. In terms of
V-projectable vector fields, the Hamiltonian condition for Rγ reads

Rγ(X,Y ) = −P ] d(σ(X,Y )), ∀X,Y ∈ Γ(Hγ) ∩ aut(M,V),

which is indeed a Hamiltonian vector field.

Example 2.20. Suppose that (A, q, [·, ·]A) is a transitive Lie algebroid, and let E
π→ M be the

coisotropy bundle, E := I∗, I := ker(q), endowed with the fiber-wise Lie-Poisson structure P and the
linear Poisson connection ∇ : TM ×E → E induced by the choice of some H ⊂ A complementary to
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I. We refer to Examples 2.14 and 2.18 for details. Let us show that the curvature of ∇ is Hamiltonian.
In fact, first consider σH ∈ Γ(∧2TM ⊗ I) given by

σH(u, v) := [h(u), h(v)]A − h[u, v].

Since q ◦ h = IdTM , it follows that q(σH(u, v)) = 0, so in fact σH(u, v) ∈ I. Now, consider the
curvature R∇ ∈ Γ(∧2TM ⊗ V ) of the linear connection ∇ on E. Observe that for u, v ∈ Γ(TM) and
a ∈ Γ(I),

LR∇(u,v) ϕa = L[hor∇(u),hor∇(v)] ϕa − Lhor∇[u,v] ϕa

= ϕ∇u∇va−∇v∇ua − ϕ∇[u,v]a = ϕ[h(u),[h(v),a]A]A−[h(v),[h(u),a]A]A − ϕ[h[u,v],a]A

= ϕ[[h(u),h(v)]A−h[u,v],a]A = ϕ[σH(u,v),a]

= P (dϕσH(u,v), dϕa) = LP ] dϕ
σH (u,v)

ϕa

This shows that R∇(u, v) = P ] dϕσH(u,v). In other words, the curvature of ∇ is Hamiltonian. A

similar computation shows that ∇σH = 0, which means that σH is ∇-covariantly constant. H

Cohomology of Poisson foliations. Associated with a Poisson foliation (M,V, P ), there exists an
intrinsic Lie algebroid (V ∗, ι ◦ P ] ◦ ι∗, {·, ·}P ), where V := TV, ι : V ↪→ TM is the inclusion map, and

{µ, ν}P = LP ]µ ν − iP ]ν dV µ, ∀µ, ν ∈ Γ(V ∗).

Here, dV ∈ Der1 Γ(∧•V ∗) is the foliated exterior derivative, and the Lie derivatives are defined by the
standard formula (see Section 2.3). The de Rham differential P : Γ(∧•V )→ Γ(∧•V ) of (V ∗, ι ◦ P ] ◦
ι∗, {·, ·}P ) coincides with the Lichnerowicz-Poisson operator of the Poisson manifold (M,P ) restricted
to the algebra of leaf-tangent multivector fields, P := [P, · ]. The Lie algebroid cohomology is denoted
by H•P (M,V). The map P ] : V ∗ → V is a morphism from the Lie algebroid on V ∗ to (V, ι, [·, ·]V ),
which induces a linear mapping in cohomology (P ])∗ : H•dR(V) → H•P (M,V). If we denote the space
of cocycles of (Γ(∧•V ), P ) by Z•P (M,V), then it is clear that Z•P (M,V) = Z•P (M) ∩ Γ(∧•V ), which
are the leaf-tangent cocycles of the Poisson manifold (M,P ). In particular,

H1
P (M,V) =

PoissV(M,P )

Ham(M,P )

is the quotient of the leaf-tangent infinitesimal Poisson automorphisms PoissV(M,P ) := Γ(V ) ∩
Poiss(M,P ) by the Hamiltonian vector fields of P .

2.4 The coupling method on foliated manifolds

Let M be a manifold and consider its Pontryagin bundle TM := TM ⊕ T ∗M . Let also V ⊆ TM
be a regular distribution on M and V ◦ := Ann(V ) ⊆ T ∗M be its annihilator. Let us also denote
V := V ⊕ V ◦ ⊂ TM .

Definition 2.21. A Lagrangian subbundle D ⊆ TM is said to be V -coupling if

D ⊕ V = TM. (2.6)
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Definition 2.22. A triple (P, γ, σ) of geometric data on (M,V ) consists of a bivector field P ∈
Γ(∧2V ), a connection form γ ∈ Γ(T ∗M ⊗ V ), and a 2-form σ ∈ Γ(∧2V ◦).

The following result means that the correspondence given in Proposition 2.4 can be extended from
vector spaces to the category of smooth manifolds.

Proposition 2.23. There exists a correspondence between V -coupling Lagrangian subbundles and
geometric data on (M,V ).

Proof. Because of Proposition 2.4, there exists a point-wise one-to-one correspondence between
V -coupling Lagrangian subbundles and geometric data on (M,V ). Furthermore, given geometric data
(P, γ, σ), it is clear that DP,γ,σ is a (smooth) Lagrangian subbundle. Conversely, given a V -coupling
subbundle D ⊆ TM , observe that the distributions H(D,V ) ⊆ TM and A(D,V ) ⊆ T ∗M defined as in
(2.1) and (2.2) are smooth. Indeed, since projection pTM : D ∩ (TM ⊕ V ◦)→ H(D,V ) is a pointwise
isomorphism, the distribution D∩ (TM ⊕V ◦) has constant rank. On the other hand, D∩ (TM ⊕V ◦)
is the orthogonal complement of the smooth subbundle (D + V ⊕ {0}) ⊆ TM . Since D ∩ (TM ⊕ V ◦)
has constant rank, so it has (D + V ⊕ {0}). This and the smoothness of (D + V ⊕ {0}) implies that
D ∩ (TM ⊕ V ◦) is smooth. Hence, H(D,V ) = pTM (D ∩ (TM ⊕ V ◦)) is smooth. In particular, its
annihilator A(D,V ) is also smooth. Therefore,

P ]D|A(D,V ) = pTM ◦
(
pT ∗M : D → A(D,V )

)−1
,

γD = prV : H(D,V )⊕ V → V,

σ[D|H(D,V ) = pT ∗M ◦
(
pTM : D → H(D,V )

)−1

are smooth. �

Now, suppose we are given a foliated manifold (M,V). We have the following result [77, 20, 65, 67]:

Theorem 2.24. There is a one-to-one correspondence between coupling Dirac structures D ⊂ TM on
(M,V) and geometric data (P, γ, σ) satisfying

[P, P ] = 0, [X,P ](µ, ν) = 0, Rγ(X,Y ) = −P ] iY iX dσ, dσ(X,Y, Z) = 0,

for all X,Y, Z ∈ Γ(Hγ) and µ, ν ∈ Γ(Aγ). Under this correspondence, D is the graph of a Poisson
structure if and only if kerσ[ = V .

The proof of this fact is given in the more general context of Poisson and Dirac structures with
background in Chapter 4 (see Theorem 4.21).

A natural example of coupling Poisson structures are the so-called Vorobiev-Poisson structures
[65, Section 4], [66, Section 6]. These coupling Poisson structures, which arise in the total space of the
coisotropy bundle of a transitive Lie algebroid over a symplectic base, were introduced by Vorobiev
in [77, Section 4]. In fact, one of the applications of this class of Poisson structures is that they arise
as the Hamiltonian setting of the Wong’s equations for a colored particle in a Yang-Mills filed [77,
Example 4.2]. Another application, which is given in the context of the linearization problem, is that
they provide the linear model for Poisson structures around symplectic leaves [77, Section 5], [78,
Section 4], [73]. Finally, it can be shown that every transitive Lie algebroid around the zero section is
isomorphic to the restricted Lie algebroid of a Vorobiev-Poisson structure [76].
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Example 2.25 (Vorobiev-Poisson structures). Let (A
p→ S, q, [·, ·]A) be a transitive Lie algebroid.

Following Examples 2.14, 2.18, and 2.20, recall that on the coisotropy bundle E := ker(ρ)∗ has a
natural structure of a Lie-Poisson bundle (E

π→ S, P ). On the other hand, the choice of a subbundle
H ⊂ A such that H ⊕ ker(ρ) = A gives a linear connection ∇ ≡ ∇H : TM ×E → E which is Poisson
on (E

π→ S, P ). Furthermore, the curvature R∇ of ∇ is Hamiltonian, with Hamiltonian form −ϕ◦σH ,

R∇(u, v) = P ] dϕσH(u,v)∀u, v ∈ Γ(TM). (2.7)

Because of Theorem 2.24, there exists a coupling Dirac structure DH on E associated with the linear
geometric data (P,∇H ,−ϕ ◦ σH), depending on the choice of the subbundle H. It is important to
observe that since ϕ ◦ σH takes values on linear functions on E, it vanishes along the zero section. In
particular DH cannot be the graph of a Poisson structure. Now suppose that the base manifold S is
symplectic, with a symplectic structure ω ∈ Γ(∧2T ∗S). Defining σω,H := −ϕ ◦ σH + π∗ω, we get that
(P,∇H , σω,H) defines again some geometric data, and defines a Dirac structure DH,ω. Furthermore,
since ω is non-degenerated, there exists a neighborhood U of the zero section in which DH,ω is the
graph of a coupling Poisson structure ΠH,ω ∈ Γ(∧2TU). H

As described in the previous example, Vorobiev-Poisson structures admit a natural generalization
to Dirac structures. In fact, in the particular case of the Atiyah algebroid of a principal bundle, this
setting is called the classical Yang-Mills-Higgs setup [81, Section 3].

2.5 Coupling neighborhoods of a symplectic leaf

One of the most relevant applications of the coupling method in Poisson geometry is that coupling
Poisson structures serve as the semilocal model for Poisson manifolds around symplectic leaves. In
other words, given an embedded symplectic leaf, there exists a tubular neighborhood of it in which
the Poisson structure is coupling. Let us recall how this fact is achieved.

Let S ↪→ M be an embedded symplectic leaf of the Poisson manifold (M,Π). By the Tubular
Neighborhood Theorem [43, Appendix 1.6], there exists a tubular neighborhood N

π→ S of S in M .
In particular, N is endowed with the foliation V provided by the fibers of the tubular structure of N .
Let us show that the neighborhood N can be shrunk so that the Poisson structure Π is coupling on
(N,V).

We begin by showing that the coupling condition holds at S. Since N
π→ S is a tubular

neighborhood of S, we have the splitting TS ⊕ TSV = TSM . This induces the dual splitting
Ann(TS)⊕Ann(TSV) = T ∗SM , where Ann(TS) = ker Π]

S . Then,

TS = Π](T ∗SM) = Π](Ann(TS)⊕Ann(TSV)) = Π](Ann(TSV)),

so Π](Ann(TSV)) ⊕ TSV = TS ⊕ TSV = TSM . This proves that the coupling condition holds at S.
By continuity, it follows that the neighborhood N can be shrunk so that the coupling condition holds
on all N .

Definition 2.26. A tubular neighborhood N of the symplectic leaf S of (M,Π) is said to be a coupling
neighborhood if the restriction Π|N is a coupling Poisson structure on the fiber bundle π : N → S.

The above discussion means that coupling Poisson structures provide a semilocal model for Poisson
structures around symplectic leaves. Furthermore, we have [78, Prop. 3.1]
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Proposition 2.27. Let (S, ω) be an embedded symplectic leaf of a Poisson manifold (M,Π). Then,
there exists a coupling neighborhood N of S. Moreover, if (P, γ, σ) are the associated geometric data
of Π|N , then

rankPS = 0, Hγ
S = TS, ι∗Sσ = ω.

Parametrization via exponential maps. Observe that the associated geometric data given in
the above proposition are not unique, since they depend on the choice of the exponential map. In
fact, given a coupling neighborhood of an embedded symplectic leaf, its tubular structure depends on
the choice of a exponential map. In particular, the geometric data, which is defined in terms of the
tubular structure, varies if the exponential map is changed.

Let S ↪→M be an embedding and let E := TSM/TS be the normal bundle of S. Let ν : TSM → E
be the canonical quotient map, and let τ : TSE → E be the projection along the splitting TSE =
TS ⊕ E.

Definition 2.28. A diffeomorphism onto its image f : E → M is called exponential map over S if
f |S = IdS and ν ◦ dS f = τ .

We remark that the existence of tubular neighborhoods follows in fact from the existence of
exponential maps. More precisely, the fiber bundle structure π : N → S of a tubular neighborhood is
defined in such a way that f : E → N is a vector bundle isomorphism. Therefore, it is clear that the
foliation V given by the fibers of N depends on the choice of f , as well as the induced geometric data
of Proposition 2.27.

Let us describe the transformation of the geometric data under the change of the exponential map.
Let i : E → TSE be the natural inclusion. Consider the pseudogroup ExS(E) ⊂ Diff(E) given by

ExS(E) := {(φ,Domφ) | φ ∈ Diff(E), φ|S = IdS , SDomφ, τ ◦ dS φ ◦ i = IdE}.

We first observe that ExS(E) is contained in the connected component of the identity in Diff(E). In
fact, for each t ∈ R, let us denote by ρt : E → E the fiberwise scalar multiplication by t. By fixing
φ ∈ ExS(E), and an open convex subset U ⊂ Domφ containing S, one can show that

φt := ρ−t ◦ φ ◦ %t : N → E

is a curve of diffeomorphisms connecting φ1 = φ with φ0 = IdE . Furthermore, one can show
by straighforward computations that the exponential maps are parameterized by the pseudogroup
ExS(E). More precisely,

Lemma 2.29. If f , f̃ : E → M are exponential maps, then f̃−1 ◦ f ∈ ExS(E). Conversely, if φ ∈
ExS(E), then f ◦ φ is an exponential map.

In terms of this class of diffeomorphisms we can establish the uniqueness of the transverse Poisson
structure of a symplectic leaf [78, Theorem 3.2, Theorem 3.4]:

Theorem 2.30 (Geometric Data). Let (S, ω) be a symplectic leaf of a Poisson manifold (M,Π),
and let f , f̃ : E → M be exponential maps over S. Let (P, γ, σ) and (P̃ , γ̃, σ̃) be the geometric data
associated with f∗Π, and f̃∗Π on E. Then, there exist g ∈ ExS(E) preserving the fibers of E, and
Q ∈ Γ(V ◦) such that

g∗P̃ = P, γ − g∗γ̃ = P ](dQ)[, g∗σ̃ = σ − (dγ1,0Q+ 1
2{Q ∧Q}P ).



46 2. THE COUPLING METHOD AND SEMILOCAL POISSON GEOMETRY



Part II

The Cohomology of Coupling
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Introduction to Part II

This part is devoted to provide a general scheme for the computation of the cohomology of Poisson
and Dirac structures near presymplectic leaves.

The relationship between bigraded cochain complexes and the computation of Poisson cohomology
in neighborhoods of symplectic leaves has been observed since long ago. In fact, in [74], Karasev and
Vorobiev gave the first steps in a semilocal description of Poisson cohomology in terms of bigraded
operators. Later on, by means of the coupling method, Crainic and Fernandes showed the existence
of a cochain complex isomorphism between the Lichnerowicz-Poisson complex near a symplectic leaf
and a bigraded cochain complex [15, Prop. 5.3]. This fact also holds for Dirac structures, as shown by
Mărcuţ in [50, Prop. 4.2.8]. In fact, recall form Chapter 2 that coupling structures on a fiber bundle
E → S are described by triples (P, γ, σ) of geometric data, consisting of a vertical bivector field P ,
an Ehresmann connection γ, and a horizontal 2-form σ satisfying some structure equations. Then,
one can associate to (P, γ, σ) some linear bigraded operators P

0,1,
γ
1,0,

σ
2,−1 on a certain bigraded

space V •,• defined in terms of the base S and the fibration on E. The coboundary condition for the
total operator P,γ,σ := P

0,1 + γ
1,0 + σ

2,−1 turns out to be equivalent to the structure equations for
(P, γ, σ). Furthermore, the resulting bigraded cochain complex is isomorphic to the cochain complex
of the Lie algebroid of the coupling structure. In other words, (V •,•, P,γ,σ) is a bigraded model for
the description of the cohomology of coupling Poisson and Dirac structures, in which the differential
operator admits a bigraded decomposition of the form

P,γ,σ := 0,1 + 1,0 + 2,−1.

The fact that the cohomology can be modelled by a bigraded complex of the above bigraded type is
not exclusive of coupling Poisson and Dirac structures. In fact, one of the first examples in geometry
leading to this class of complexes are foliated manifolds. In [61], Vaisman explains in detail that
the de Rham complex (Γ(∧•T ∗M), d) of a foliated manifold (M,F) endowed with a complementary
distribution H is bigraded, and the de Rham differential is the sum of three operators of bigraded
types (0,1), (1,0), and (2,-1), d = dγ0,1 + dγ1,0 + dγ2,−1. Here, γ ≡ γH is the Ehresmann connection
associated with H.

Another example in which a cochain complex with a bigrading arises is the case of regular Poisson
manifolds. In [74], Karasev and Vorobiev provided a recursive procedure to compute the cohomology
of a Poisson manifold (M,Π) in which its symplectic foliation is a fibration. This procedure is based
in the fact that the choice of an Ehresmann connection on the fibration leads to a bigrading of the
Lichnerowicz-Poisson complex (Γ(∧•T ∗M), Π) such that the differential is the sum of two operators
of bigraded types (1, 0) and (2,−1), Π = ( Π)1,0 + ( Π)2,−1. Furthermore, Vaisman explains in [62]
that this property holds for any regular Poisson manifold endowed with a complementary distribution
to the symplectic foliation1.

1The bigraded type of the operators in [62] are (0, 1) and (−1, 2), but this apparent discrepancy is simply due to a
difference on the bidegree convention.
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Transitive Lie algebroids also provide examples of cochain complexes endowed with a bigrading.
In fact, given a transitive Lie algebroid (A → M, q, [·, ·]A) with isotropy bundle I := ker(q), there
exists a short exact sequence of Lie algebroids over M , given by

0→ I ↪→ A
q
� TM → 0.

The choice of some h : TM → A with q ◦ h = IdTM induces a bigrading of the de Rham complex
(Γ(∧•A∗), A) so that A = ( A)0,1 + ( A)1,0 + ( A)2,−1. In [33], Itskov, Karasev, and Vorobiev
present several cohomological results on the cohomology of the transitive Lie algebroids obtained by
the restriction of the Lie algebroid to a leaf of the characteristic foliation.

The case of a transitive Lie algebroid can be described as a particular case of an extension of Lie
algebroids. Given two Lie algebroids E → M and A → N , we say that E is an extension of A if we
have a Lie algebroid epimorphism π : E → A covering a submersion base map p : M → N . The kernel
V := ker(π) is an involutive subbundle of E, so inherits a Lie algebroid structure such that

0→ V ↪→ E
π
� A→ 0

is a short exact sequence of Lie algebroids. This is described in detail by Brahic in [7]. Furthermore,
it is shown that the choice of a map h : A→ E such that π ◦ h = IdE also induces a bigrading of the
de Rham complex of A, just as in the case of a transitive Lie algebroid. Furthermore, Brahic provides
a bigraded model for the cochomology of a Lie algebroid extension.

These facts are indeed a motivation for the results presented in this part. Indeed, we consider
an abstract bigraded cochain complex (C•,•, ) such that = 0,1 + 1,0 + 2,−1, and describe its
cohomology in terms only of the bigrading. In particular, we present explicit computations for the
cohomology in degree 1, 2 and 3 (see Section 3.4). We also provide the following general setting in
which all of the previous geometric examples fit: Suppose we are given a Lie algebroid (E, q, [·, ·]E)
endowed with a fixed involutive subbundle V ⊂ E. Then, it is straightforward to verify that the
choice of a complementary subbundle H ⊂ E, H ⊕ V = E gives a bigrading of the de Rham complex
(Γ(∧•E∗, ) such that = 0,1 + 1,0 + 2,−1. Furthermore, the exterior algebra Γ(∧•,•(V ◦ ⊕ V ∗)) is
a bigraded model, in which the bigrading and the operator of bidegree (0,1) is independent of H, and
is associated with the de Rham differential of the Lie subalgebroid V ⊂ E. The operator H

1,0 is a sort

of covariant exterior derivative, and H
2,−1 only depends on the curvature of H.

Another of the results in this part is to show that the cohomology of coupling twisted Poisson and
Dirac structures on foliated manifolds can be also described in terms of a bigraded cochain complex.
To this end in Section 4.3 we extend the coupling method to twisted Poisson and Dirac structures on
foliated manifolds. To this end, we based on the algebraic description of the coupling method given in
Chapter 2, and some computations with the Dorfman bracket. Finally, by means of some Vinogadov
calculus we propose a bigraded cohomological model which allows us to describe the cochain complex
associated with coupling twisted Poisson and Dirac structures. This bigraded model is based on the
one constructed in [50, Subsection 4.2] for the case of coupling structures on fiber bundles.



Chapter 3

The Cohomology of a Bigraded Cochain Complex

This chapter is devoted to the study of the cohomology of a special class of bigraded cochain complexes.
For several examples of this clss of cochain complexes arising from geometric structures see [6, 7, 8,
26, 46, 47, 74, 75, 61, 62].

We begin in Section 3.1 by setting the algebraic framework in which this study is developed, and
present a few steps in the direction of establish our main results. In Section 3.2, we introduce some of
the objects which allows us to describe the cohomology of bigraded complexes. Section 3.3 is devoted
to present our results in a recursive perspective, which is useful to describe particular cohomology
classes. In Section 3.4 we give a more detailed description of the cohomology in degree 1, 2, and 3.
Finally, Section 3.5 is devoted to the description of the cochomology of some special classes of bigraded
complexes which are common in the literature.

3.1 Bigraded cochain complexes and its cohomology

Notations and conventions. Recall that a cochain complex is a pair (C•, ) consisting of a graded
(Z-graded) R-linear space C• =

⊕
k∈Z Ck and an R-linear operator ∈ End1

R(C) on C of degree 1 such

that 2 = 0.
Suppose that, in addition, C is a bigraded (Z2-graded) linear space such that the bigrading is

compatible with the original Z-grading in the following sense:

Ck =
⊕
p+q=k

Cp,q ∀k ∈ Z. (3.1)

We also assume that Cp,q = {0} whenever p or q is negative. Moreover, suppose that the coboundary
operator splits in the sum of three bigraded operators with respect to the bigrading (3.1),

= 2,−1 + 1,0 + 0,1, (3.2)

where i,j(Cp,q) ⊆ Cp+i,q+j for (i, j) ∈ {(2,−1), (1, 0), (0, 1)}. The right-hand side of (3.2) is called the
bigraded decomposition of .

In terms of the decomposition (3.2), the coboundary condition 2 = 0 reads

2
2,−1 = 0, (3.3)

2,−1 1,0 + 1,0 2,−1 = 0, (3.4)

2,−1 0,1 + 0,1 2,−1 + 2
1,0 = 0, (3.5)

1,0 0,1 + 0,1 1,0 = 0, (3.6)
2
0,1 = 0. (3.7)

51
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Here, the left-hand sides of equations (3.3)-(3.7) are the bigraded components of 2. In particular,
(3.7) implies that (Cp,•, 0,1) is a cochain complex for each p ∈ Z. For any cochain complex, we use
the notation Z•, B•, and H• to indicate the linear spaces of cocycles, coboundaries, and cohomology,
respectively.

Spectral sequence. Consider the decreasing filtration F of C given by

F pC :=
⊕
i,j∈Z
i≥p

Ci,j .

For every subspace S ⊆ C, denote F pS := F pC∩S. In particular, F pCk =
⊕

i≥p Ci,k−i. Moreover, since

C•,• lies in the first quadrant, we have F 0Ck = Ck and F k+1Ck = {0}, so the filtration is bounded.
Furthermore, it follows from the bigraded decomposition (3.2) that (F pC) ⊆ F pC for all p ∈ Z.
Hence, the triple (C•, , F ) is a graded filtered complex.

Let (E•,•r , dr) be the spectral sequence associated with (C•, , F ), that is, for each p, q, r ∈ Z,

Ep,qr := Zp,qr +F p+1Cp+q
Bp,qr−1+F p+1Cp+q [21, Eq. (2.46)], where

Zp,qr := F pCp+q ∩ −1(F p+rCp+q), Bp,q
r−1 := F pCp+q ∩ (F p−r+1Cp+q),

the sums Zp,qr + F p+1Cp+q, and Bp,q
r−1 + F p+1Cp+q are as R-vector subspaces of C•, and dr : Ep,qr →

Ep+r,q+1−r
r is induced by the restriction of to Zp,qr . In particular, Ep,q0 = F pCp+q

F p+1Cp+q
∼= Cp,q, so (E•,•r , dr)

is a first quadrant spectral sequence. Therefore, Ep,qN = Ep,q∞ for all N ≥ max{p+ 1, q + 2}, where

Ep,q∞ :=
Zp+q(C, ) ∩ F pCp+q + F p+1Cp+q

Bp+q(C, ) ∩ F pCp+q + F p+1Cp+q
.

Since the filtration F is bounded, the spectral sequence converges to the cohomology of (C•, ).
Furthermore, taking into account that (C•, ) is an R-vector space, we get the following splitting for
the k-th cohomology of (C•, ):

Hk(C, ) ∼=
⊕
p+q=k

Ep,q∞ . (3.8)

In what follows, we give a more explicit description of the summands in the splitting (3.8). For
each q ∈ Z, define GqC :=

⊕
i,j∈Z
j≥q
Ci,j , and consider the projection

πq : C• → GqC

along the splitting induced by the bigrading. In particular, πq = IdC if q ≤ 0. For simplicity, we use
the same notation for the restriction of πq to any subspace of C.

Lemma 3.1. For each p, q ∈ Z such that p+ q = k, we have Ep,q∞ ∼= πq(Zk(C, ))∩Cp,q
πq(Bk(C, ))∩Cp,q .

Proof. Consider the projection prp,q : C → Cp,q along the splitting (3.1). Observe that, for each

subspace S ⊂ Ck, we have

S ∩ F pCk + F p+1Ck = prp,q(S ∩ F pCk)⊕ F p+1Ck.
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On the other hand, it is straightforward to verify that every element of prp,q(S ∩F pCk) is of the form
yp,q, for some y ∈ S with bigraded decomposition y =

∑
i≥p yi,k−i. Thus,

prp,q(S ∩ F pCk) = πq(S) ∩ Cp,q.

Setting S = Zk(C, ) and S = Bk(C, ), we get

Ep,q∞ =
Zk(C, ) ∩ F pCk + F p+1Ck

Bk(C, ) ∩ F pCk + F p+1Ck
=

prp,q(Z
k(C, ) ∩ F pCk)⊕ F p+1Ck

prp,q(B
k(C, ) ∩ F pCk)⊕ F p+1Ck

=
(πq(Z

k(C, )) ∩ Cp,q)⊕ F p+1Ck

(πq(Bk(C, )) ∩ Cp,q)⊕ F p+1Ck
∼=
πq(Z

k(C, )) ∩ Cp,q

πq(Bk(C, )) ∩ Cp,q
.

�

Splittings for cocycles and coboundaries. We now derive similar splittings for the spaces of
k-cocycles and k-coboundaries. Observe that for each subspace S ⊂ Ck, we have a family of short
exact sequences, given by

0→ πq(S) ∩ Cp,q ↪→ πq(S)
πq+1→ πq+1(S)→ 0, 0 ≤ q ≤ k − 1, (3.9)

where p := k − q. In the case of cocycles and coboundaries, we get the following result.

Proposition 3.2. For each p, q ∈ Z, with p+ q = k, we have the following commutative diagram with
exact rows and columns which all describe the spaces of k-coboundaries Bk(C, ), k-cocycles Zk(C, ),
and k-cohomology Hk(C, ):

0

��

0

��

0

��
0 // πq(B

k(C, )) ∩ Cp,q� _

��

� � // πq(B
k(C, ))� _

��

πq+1// // πq+1(Bk(C, ))� _

��

// 0

0 // πq(Z
k(C, )) ∩ Cp,q

����

� � // πq(Z
k(C, ))

����

πq+1// // πq+1(Zk(C, ))

����

// 0.

0 // πq(Z
k(C, ))∩Cp,q

πq(Bk(C, ))∩Cp,q

��

// // πq(Z
k(C, ))

πq(Bk(C, ))

��

// // πq+1(Zk(C, ))

πq+1(Bk(C, ))
//

��

0

0 0 0

Here, the mappings from the second to the third row are the canonical projections, and the maps
πq(Zk(C, ))∩Cp,q
πq(Bk(C, ))∩Cp,q →

πq(Zk(C, ))
πq(Bk(C, ))

and
πq(Zk(C, ))
πq(Bk(C, ))

→ πq+1(Zk(C, ))

πq+1(Bk(C, ))
are defined in such a way that the lower

2× 2 blocks commute.

Proof of Proposition 3.2. The upper 2 × 2 diagrams are clearly commutative because the arrows ↪→
are natural inclusions, and the arrows with a πq+1 are the restriction of the same mapping. On the
other hand, the exactness of the first row is obtained from (3.9) by setting S := Bk(C, ). Similarly,
the exactness of the second row follows from setting S := Zk(C, ) in (3.9). Moreover, each column
is exact by definition. Finally, the exactness of the last row follows from the commutativity and the
exactness of the rest of the diagram. �
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Corollary 3.3. The coboundary, cocycle, and cohomology spaces of degree k admit the following
splittings:

Bk(C, ) ∼=
⊕
p+q=k

πq(B
k(C, )) ∩ Cp,q, Zk(C, ) ∼=

⊕
p+q=k

πq(Z
k(C, )) ∩ Cp,q, and

Hk(C, ) ∼=
⊕
p+q=k

πq(Zk(C, ))∩Cp,q
πq(Bk(C, ))∩Cp,q .

Note that the splitting for Hk(C, ) in Corollary 3.3 coincides with (3.8) under Lemma 3.1

Remark 3.4. Every result of this part is valid if the bigraded decomposition of has the more
general form =

∑
r≥0 r,1−r. Moreover, Lemma 3.1 and Proposition 3.2 still hold if (C•, ) is a

cochain complex over a ring, while the non-canonical splittings in (3.8) and in Corollary 3.3 only hold
in the vector spaces category.

Otherwise stated, we assume in what follows that (C•, ) is a cochain complex over a ring R. In
the cases when we require that the ring of scalars is a field, this condition will be explicitly indicated.

3.2 Describing the cohomology

In this Section, we introduce some useful objects which allow us to improve our description of the
splittings in Corollary 3.3 and the diagram of Proposition 3.2.

The null subcomplexes. For simplicity, for each p, q, k ∈ Z we denote

kerk( i,j) := ker( i,j : Ck → Ck+1), and kerp,q( i,j) := ker( i,j : Cp,q → Cp+i,q+j),

for all (i, j) ∈ {(0, 1), (1, 0), (2,−1)}. Let us denote

N := ker( 0,1 : C → C) ∩ ker( 2,−1 : C → C),

N k := kerk( 0,1) ∩ kerk( 2,−1), N p,q := kerp,q( 0,1) ∩ kerp,q( 2,−1), and Nq :=
⊕

p∈ZN p−q,q. Since

0,1 and 2,−1 are bigraded operators, we have N =
⊕

k∈ZN k and N k =
⊕

p+q=kN p,q. Moreover,

Lemma 3.5. The graded R-module N is a cochain subcomplex of (C, ). Moreover, for each q ∈ Z,
Nq is also a cochain subcomplex of (C, ).

Proof. Since N =
⊕

q∈ZNq, it suffices to show that each Nq is a cochain subcomplex of (C, ). By
definition, 0,1 and 2,−1 vanish on Nq. Thus,

(N p−q,q) = 1,0(N p−q,q) ⊆ 1,0(Cp−q,q) ⊆ C(p+1)−q,q.

To complete the proof, we just need to verify that 1,0(N ) ⊆ N . Fix η ∈ N . Then, 2,−1η = 0 and

0,1η = 0. By applying equations (3.4) and (3.6),

2,−1( 1,0η) = − 1,0 2,−1η = 0, and 0,1( 1,0η) = − 1,0 0,1η = 0,

proving that 1,0η ∈ N . Thus, (Nq) ⊆ Nq, as claimed. �
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We denote by := |N the coboundary operator on N . We use the same notation for any of the
cochain subcomplexes Nq. The cochain complexes (N , ) and (Nq, ) are called the null subcomplexes
of (C, ). Finally, recall that Cp,q = {0} whenever p or q is negative. In particular, C•,0 ⊆ ker( 2,−1).
Therefore, N0 = ker( 0,1 : C•,0 → C•,1). In other words, for q = 0, the restriction of 1,0 to the

0,1-cocycles of bidegree (p, 0) gives the null subcomplex N0.

Pre-coboundaries and pre-cocycles. Recall that the terms appearing in the upper row of the
diagrams of Proposition 3.2 are of the form πq(B

k(C, )) or πq(B
k(C, )) ∩ Cp,q, whose elements are

obtained by projecting a k-coboundary under πq : C → GqC. We call the elements of πq(B
•(C, ))

pre-coboundaries, and the elements of πq(B
•(C, ))∩Cp,q, homogeneous pre-coboundaries. In a similar

fashion, we call the elements of πq(Z
•(C, )) pre-cocycles, and the elements of πq(Z

•(C, )) ∩ Cp,q,
homogeneous pre-cocycles.

In this part, we give a detailed description of the R-module of pre-cocycles. In fact, although a
pre-cocycle is defined as the projection of a cocycle, we describe a bigger R-module containing the
cocycles such that the projection of its elements is again a pre-cocycle. In this sense, we have found
some degrees of freedom in the construction of pre-cocycles.

Observe that η ∈ C1 is a 1-cocycle if and only if

2,−1η0,1 + 1,0η1,0 = 0, 1,0η0,1 + 0,1η1,0 = 0, 0,1η0,1 = 0.

The left-hand sides of each equation correspond to the bigraded components of η. Similarly, η ∈ C2

is a 2-cocycle if and only if

2,−1η1,1 + 1,0η2,0 = 0, 2,−1η0,2 + 1,0η1,1 + 0,1η2,0 = 0,

1,0η0,2 + 0,1η1,1 = 0, 0,1η0,2 = 0.

In general, for each η ∈ Ck with bigraded components ηp,q ∈ Cp,q (p+q = k), the bigraded components
of η are

( η)i,j = 0,1ηi,j−1 + 1,0ηi−1,j + 2,−1ηi−2,j+1, i+ j = k + 1.

Let us consider the graded R-modules

M := {η ∈ C | η ∈ B(N , )}, (3.10)

and

Mk := {η ∈ Ck | ( η)i,j ∈ Bk+1(Nj , ), i+ j = k + 1}.

Then, M• =
⊕

k∈ZMk. Moreover, it is clear that Z(C, ) ⊆M. Now, for each q ∈ Z, define

Zq := {πq(η) | η ∈M, and πq( η) = 0}, and Zkq := {πq(η) | η ∈Mk, and πq( η) = 0}.

In other words, the elements of Zq ⊆ GqC are of the form πq(η), for some η ∈ C satisfying

0,1ηi,j−1 + 1,0ηi−1,j + 2,−1ηi−2,j+1 ∈

{
{0} if j ≥ q,

B(Nj , ) if j < q.

Note that Z•q =
⊕

k∈ZZkq . Furthermore, we claim that Zq is precisely the R-module of pre-cocycles
in GqC.
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Proposition 3.6. For each q ∈ Z, we have πq(Z(C, )) = Zq. In particular, ξ ∈ Cp,q is a pre-cocycle
if and only if 0,1ξ = 0 and there exist η ∈ F pMp+q such that ηp,q = ξ, and 1,0ηp,q+ 0,1ηp+1,q−1 = 0.

Proof. The inclusion πq(Z(C, )) ⊆ Zq simply follows from the already mentioned fact Z(C, ) ⊆M.
Conversely, pick ξ ∈ Zkq , of the form ξ =

∑
j≥q ξj , where ξj ∈ Ck−j,j . Then, there exists η ∈Mk such

that πq(η) = ξ and πq( η) = 0. Let ηj ∈ Ck−j,j be the bigraded components of η. The condition
η ∈Mk implies that for each j < q there exists η′j ∈ N k−j,j such that

0,1ηj−1 + 1,0ηj + 2,−1ηj+1 = 1,0η
′
j ,

Finally, set ξ̃ := η −
∑

j<q η
′
j . Since 0,1η

′
j = 0 and 2,−1η

′
j = 0, it is straightforward to verify that

ξ̃ = 0. Furthermore, πq(ξ̃) = ξ, which proves that ξ ∈ πq(Zk(C, )). �

For each q, k ∈ Z denote by Bkq := πq(B
k(C, )) the R-module of pre-coboundaries. As a

consequence, of Propositions 3.2 and 3.6, we have:

Theorem 3.7. For each p, q ∈ Z with p + q = k, we have the following commutative diagrams with
exact rows and columns describing the coboundary, cocycle, and cohomology of (C•,•, ):

0

��

0

��

0

��
0 // Bkq ∩ Cp,q� _

��

� � // Bkq� _
��

πq+1// // Bkq+1� _

��

// 0

0 // Zkq ∩ Cp,q

����

� � // Zkq
����

πq+1// // Zkq+1

����

// 0.

0 // Z
k
q ∩Cp,q

Bkq∩Cp,q

��

// // Z
k
q

Bkq

��

π̄q+1// // Z
k
q+1

Bkq+1

��

// 0

0 0 0

Corollary 3.8. In the case when R is a field, we get the following splittings:

Bk(C, ) ∼=
⊕
p+q=k

Bkq ∩ Cp,q, Zk(C, ) ∼=
⊕
p+q=k

Zkq ∩ Cp,q, Hk(C, ) ∼=
⊕
p+q=k

Zkq ∩ Cp,q

Bkq ∩ Cp,q
.

3.3 The recursive point of view

Before going further in the description of the diagrams appearing in Theorem 3.7 in the low-degree
case, let us interpret this result from a recursive point of view. This perspective is particularly useful
when we are interested in understanding an specific cohomology class of (C, ).

Recall from Theorem 3.7 that the cocycles, coboundaries, and cohomology of (C, ) is described

by a family of diagrams, one for each q = 0, 1, . . . , k. By denoting Hp,qq :=
Zkq ∩Cp,q

Bkq∩Cp,q
, Hkq :=

Zkq
Bkq

, and

p = k − q, the bottom row of the q-th diagram is

0 // Hp,qq �
� // Hkq

π̄q+1// // Hkq+1
// 0. (3.11)
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Now, pick some η ∈ Zk(C, ), with bigraded decomposition

η =
∑
i+j=k

ηi,j = η0,k + η1,k−1 + · · ·+ ηk,0.

Since Hk(C, ) = Hk0 , we have [η] ∈ Hk0 . Denote [η]0 := [η], and for each q = 1, . . . , k, recursively
define [η]q ∈ Hkq by [η]q := π̄q[η]q−1. It is clear that [η]q is well defined for each q. Explicitly, we have

[η]k+1 = 0, [η]k = η0,k + Bkk , and in general

[η]q =
∑
i+j=k
j≥q

ηk−j,j + Bkq .

In what follows, let us describe the obstructions for the vanishing of the cohomology class [η] ∈
Hk(C, ). By the relation [η]q+1 = π̄q+1[η]q, a necessary condition for [η]q = 0 is that [η]q+1 = 0.
Conversely, if [η]q+1 = 0, then the exactness of (3.11) implies that [η]q = ηp,q + Bkq ∩ Cp,q, where

ηp,q ∈ Zkq ∩ Cp,q. So, under the vanishing of [η]q+1, the class [ηp,q] ∈ Hp,qq is well defined, and the
property [η]q = 0 is equivalent to the vanishing of [ηp,q].

To get more insight in the previous facts, let us describe them in an explicit fashion. Consider the
bigraded decomposition η =

∑
i+j=k ηi,j . Clearly, πkη = η0,k, so [η]k = [η0,k] ∈ H0,k

k . Now, suppose

that [η0,k] = 0. Then, there exists η′ = ∂ξ ∈ Bk(C, ∂) such that η0,k = η′0,k. Since [η] = [η − η′],
the representative η − η′ is such that the component of bidegree (0, k) vanishes. So, without loss of

generality, we may assume that η0,k = 0. Then, [η]k−1 = [η1,k−1] ∈ H1,k−1
k−1 . Assuming that [η1,k−1] = 0,

there exists η′′ = ∂ξ′ such that πk−1η
′′ = η1,k−1 (so, in particular, η′′0,k = 0). The difference η − η′′ is

a representative of [η] such that the components of bidegree (0, k) and (1, k − 1) vanish, so we may

assume that πk−1η = 0. Thus, [η]k−2 = [η2,k−2] ∈ H1,k−1
k−1 , and so on.

In summary, the short exact sequences given by the bottom diagrams can be described in the
following way. Given [η] ∈ Hk(C, ), an obstruction to [η] = 0 is the cohomology class [η0,k] ∈ H0,k

k . If

[η0,k] = 0, then the class [η1,k−1] ∈ H1,k−1
k−1 is well defined, and is a new obstruction to the vanishing of

[η]. If in addition [η1,k−1] = 0, then [η2,k−2] ∈ H2,k−2
k−2 is well defined and is a new obstruction to the

vanishing of [η]. On every stage, under the vanishing of [ηp,q] ∈ Hp,qq , the class [ηp+1,q−1] ∈ Hp+1,q−1
q−1

is well defined, independent of the choice of the representative η, and is an obstruction to [η] = 0. In

the last stage, our cohomology class is of the form [η] = [ηk,0] ∈ Hk,00 .

Low degree. Given η ∈ Zk(C, ), it is important to remark that [ηp,q] ∈ Hp,qq is well defined only in

the case when [ηp−1,q+1] ∈ Hp−1,q+1
q+1 also is well defined and vanishes, [ηp−1,q+1] = 0. As explained in

the previous paragraphs, the vanishing of a cohomology class of degree k is controlled by a sequence
of (k+ 1) “simpler” cohomology classes, and each of them is obtained by projecting into the bigraded
components of the original one, as long as the previous cohomology class vanishes. Let us illustrate
this in some low-degree cases.

If k = 1, then the cohomology is described by only one short exact sequence,

0 // H1,0
0
� � // H1(C, )

π̄1 // // H0,1
1

// 0.

In this case, the vanishing of a cohomology class [η] ∈ H1(C, ) is controlled by at most two cohomology
classes. In fact, a necessary condition for [η] = 0 is that [η0,1] ∈ H0,1

1 vanishes. Conversely, under
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[η0,1] = 0, the cohomology class [η1,0] ∈ H1,0
0 is well-defined and satisfies [η] = [η1,0], due to the

exactness of the sequence. Thus, if [η0,1] = 0, then the vanishing of [η] is equivalent to [η1,0] = 0.
For k = 2, the cohomology is described by means of two short exact sequences, namely

0 // H2,0
0
� � // H2(C, )

π̄1 // // H2
1

// 0, 0 // H1,1
1
� � // H2

1
π̄2 // // H0,2

2
// 0.

In this case, the vanishing of [η] ∈ H2(C, ) is controlled by at most three cohomology classes. A
necessary condition is [η0,2] = 0. Under this condition, the cohomology class [η1,1] ∈ H1,1

1 is well
defined and satisfies [η1,1] = [η]1, due to the exactness of the second sequence. In this case, a necessary

condition for the vanishing of [η] is [η1,1] = 0. Under this condition, the cohomology class [η2,0] ∈ H2,0
0

is well defined and satisfies [η2,0] = [η], due to the exactness of the first sequence. Hence, if [η0,2] = 0
and [η1,1] = 0, then the vanishing of [η] is equivalent to [η2,0] = 0.

3.4 Cohomology in low degree

In this section, we describe the diagrams of Theorem 3.7 for the cases k = 1, 2, 3 in more detail.
Following the notation of Section 3.2, observe that the homogeneous pre-cocycles of bidegree (k, 0)

are just the k-cocycles in (N0, ),

Zk0 ∩ Ck,0 = {η ∈ Ck,0 | 1,0η = 0, 0,1η = 0} = Zk(N0, ). (3.12)

On the other hand, the homogeneous pre-coboundaries of bidegree (0, k) are precisely the
k-coboundaries of the complex (C0,•, 0,1),

Bkk ∩ C0,k = Bk(C0,•, 0,1). (3.13)

We now refine our description of the R-module Zk1 of pre-cocycles for q = 1.

The mappings ρ : A → H(N , ) and % : J → H(N , ). For each k ∈ Z, consider the linear
modules Ak and J k, where

Ak := {π1(η) | η ∈ Ck, π1( η) = 0}, and J k := Ak ∩ Ck−1,1. (3.14)

Explicitly, ξ ∈ G1Ck lies in Ak if and only if π2( ξ) = 0 and there exists η ∈ Ck,0 such that 0,1η +

1,0ξk−1,1 + 2,−1ξk−2,2 = 0. In particular, ξ ∈ Ck−1,1 lies in J k if and only if 0,1ξ = 0 and there
exists η ∈ Ck,0 such that 0,1η + 1,0ξ = 0.

Lemma 3.9. For each η ∈ Ck such that π1( η) = 0, one has prk+1,0( η) ∈ Zk+1(N0, ).

Proof. One must show that prk+1,0( η) ∈ ker 1,0 ∩ ker 0,1. First note that

prk+1,0( η) = 2,−1ηk−1,1 + 1,0ηk,0.

By applying (3.5) and (3.6),

0,1(prk+1,0( η)) = 0,1 2,−1ηk−1,1 + 0,1 1,0ηk,0

= − 2
1,0ηk−1,1 − 2,−1 0,1ηk−1,1 − 1,0 0,1ηk,0. (3.15)
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The condition π1( η) = 0 implies that prk,1( η) = 0,1ηk,0 + 1,0ηk−1,1 + 2,−1ηk−2,2 = 0 which,
together with (3.15), leads to

0,1(prk+1,0( η)) = 0,1(prk+1,0( η)) + 1,0(prk,1( η))

= − 2,−1 0,1ηk−1,1 + 1,0 2,−1ηk−2,2. (3.16)

Now, from (3.4), we get

0,1(prk+1,0( η)) = − 2,−1 0,1ηk−1,1 − 2,−1 1,0ηk−2,2. (3.17)

Again, from π1( η) = 0 we get prk−1,2( η) = 0,1ηk−1,1 + 1,0ηk−2,2 + 2,−1ηk−3,3 = 0. By (3.17),

0,1(prk+1,0( η)) = 0,1(prk+1,0( η)) + 2,−1(prk−1,2( η)) = 2
2,−1ηk−3,3.

Therefore, 0,1(prk+1,0( η)) = 0, due to (3.3). In a similar fashion, by applying (3.4) and (3.5) we
obtain

1,0(prk+1,0( η)) = − 2,−1 1,0ηk−1,1 − 0,1 2,−1ηk,0 − 2,−1 0,1ηk,0.

Note that 2,−1ηk,0 = 0, due to its negative bidegree. Taking into account that prk,1( η) = 0,1ηk,0 +

1,0ηk−1,1 + 2,−1ηk−2,2 = 0, we get

1,0(prk+1,0( η)) = 2
2,−1ηk−2,2,

which is zero because of (3.3). �

Now, by definition, for each ξ ∈ Ak there exist η ∈ Ck such that π1η = ξ and π1( η) = 0. By
Lemma 3.9, η induces a cohomology class

[ 2,−1ηk−1,1 + 1,0ηk,0] ∈ Hk+1(N0, ).

We claim that the cohomology class only depends on ξ, that is, it is independent of the choice of η.
Indeed, pick another η̃ ∈ Ck such that π1η̃ = ξ and π1( η̃) = 0. Since ηk−1,1 = η̃k−1,1 = ξk−1,1, we get

( 2,−1η̃k−1,1 + 1,0η̃k,0)− ( 2,−1ηk−1,1 + 1,0ηk,0) = 1,0(η̃k,0 − ηk,0).

To see that η and η̃ induce the same cohomology class, we just need to check that η̃k,0 − ηk,0 ∈ N0.
From π1( η) = 0 and π1( η̃) = 0 we get that 0,1η + 0,1ξk,0 = 0 and 0,1η̃ + 0,1ξk,0 = 0. Therefore,
η̃k,0 − ηk,0 ∈ kerk,0 0,1 = N k,0. Hence, the cohomology class is well defined.

This can be summarized in the following fact.

Lemma 3.10. There exists a well-defined linear map ρk : Ak → Hk+1(N0, ) given by

ρk(ξ) := [ 2,−1ξk−1,1 + 1,0ηk,0],

where η ∈ Ck is such that π1η = ξ and π1( η) = 0. Moreover, we have the identity Zk1 = ker(ρk).
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Proof. The fact that ρk(ξ) is well defined follows from our previous discussion, in which we have
explained that [ 2,−1ξk−1,1 + 1,0ηk,0] only depends of ξ. Moreover, the linearity of ρk follows from
the linearity of 2,−1, 1,0, and π1. So, it is left to show that ker(ρk) = Zk1 . Recall that, by definition,
the elements of Zk1 are of the form π1(η), where 2,−1ηk−1,1 + 1,0ηk,0 ∈ Bk+1(N0, ), and π1( η) = 0.
Therefore,

ker(ρk) = {π1(η) | η ∈ Ck, π1( η) = 0, and 2,−1ηk−1,1 + 1,0ηk,0 ∈ Bk+1(N0, )} = Zk1 .

�

For each k ∈ Z≥0, define %k : J k → Hk+1(N0, ) by the restriction %k := ρk|J k . As a consequence
of Lemma 3.10, we have

ker(%k) = Zk1 ∩ Ck−1,1.

Refining the splittings for the low-degree cohomology. By applying Theorem 3.7, we describe
the first, second, and third cohomology of the bigraded cochain complex (C, ) in terms of the cochain
complexes (Cp,•, 0,1), (Nq, ), and the mappings ρ : A → H(N , ) and % : J → H(N , ) given in
Lemmas 3.5 and 3.10.

First cohomology. Here we state our main result on the first cohomology of (C, ).

Theorem 3.11. We have the following commutative diagram with exact rows and columns,

0

��

0

��

0

��
0 // B1(N0, )� _

��

� � // B1(C, )� _

��

π1// B1(C0,•, 0,1)� _

��

// 0

0 // Z1(N0, )

��

� � // Z1(C, )

��

π1 // ker(ρ1)

��

// 0.

0 // H1(N0, )

��

// H1(C, )

��

// ker(ρ1)
B1(C0,•, 0,1)

��

// 0

0 0 0

Observe that this result on the first cohomology of (C, ) involves the map ρ1 : A1 → H2(N0, ),
which is related to the second cohomology of (N0, ).

Proof of Theorem 3.11. The fact that the diagram of Theorem 3.11 coincides with the one given in
Theorem 3.7 for k = 1 follows from equations (3.12) and (3.13), the definition of %k, and from Lemma
3.10. We also need the following identity,

B1
0 ∩ C1,0 = { 1,0f | 0,1f = 0, f ∈ C0} = B1(N0, ).

�



3.4. COHOMOLOGY IN LOW DEGREE 61

Corollary 3.12. In the case when R is a field, the coboundary, cocycle, and cohomology spaces of
degree 1 admit the following splittings as vector spaces:

B1(C, ) ∼= B1(N0, )⊕B1(C0,•, 0,1), Z1(C, ) ∼= Z1(N0, )⊕ ker(ρ1),

H1(C, ) ∼= H1(N0, )⊕ ker(ρ1)

B1(C0,•, 0,1)
.

Explicitly,

B1(N0, ) = { 1,0f | f ∈ C0,0, 0,1f = 0},
B1(C0,•, 0,1) = { 0,1f | f ∈ C0,0},

A1 = {Y ∈ C0,1 | 0,1Y = 0, ∃αY ∈ C1,0 : 0,1αY + 1,0Y = 0},
Z1(N0, ) = {α ∈ C1,0 | 0,1α = 0, 1,0α = 0},

ker(ρ1) = {Y ∈ A1 | 2,−1Y + 1,0αY ∈ B1(N0, )}.

Second cohomology. Similarly, theR-modules of cocycles, coboundaries, and cohomology of degree
2 of the bigraded cochain complex (C, ) are described by the following more explicit diagrams.

Theorem 3.13. We have the following commutative diagrams with exact rows and columns,

0

��

0

��

0

��
0 // B2(C, ) ∩ C2,0

� _

��

� � // B2(C, )� _
��

π1 // B2
1� _

��

// 0

0 // Z2(N0, )

��

� � // Z2(C, )

��

π1 // ker(ρ2)

��

// 0,

0 // Z2(N0, )
B2(C, )∩C2,0

��

// H2(C, )

��

// ker(ρ2)
B2

1

��

// 0

0 0 0

0

��

0

��

0

��
0 // B2

1 ∩ C1,1
� _

��

� � // B2
1� _

��

π2// B2(C0,•, 0,1)� _

��

// 0

0 // ker(%2)

��

� � // ker(ρ2)

��

π2 // Z2
2

��

// 0.

0 // ker(%2)
B2

1∩C1,1

��

// ker(ρ2)
B2

1

��

// Z2
2

B2(C0,•, 0,1)

��

// 0

0 0 0

Observe that this result on the second cohomology of (C, ) involves the maps ρ2 : A2 → H3(N0, )
and %2 : J 2 → H3(N0, ), related to the third cohomology of (N0, ). Also, the submodule Z2

2 is
related to the 3-coboundaries of (N1, ).

Corollary 3.14. In the case when R is a field, the coboundary, cocycle, and cohomology spaces of
degree 2 admit the following splittings as vector spaces:

B2(C, ) ∼= (B2(C, ) ∩ C2,0)⊕ (B2
1 ∩ C1,1)⊕B2(C0,•, 0,1),

Z2(C, ) ∼= Z2(N0, )⊕ ker(%2)⊕Z2
2 ,

H2(C, ) ∼=
Z2(N0, )

B2(C, ) ∩ C2,0
⊕ ker(%2)

B2
1 ∩ C1,1

⊕ Z2
2

B2(C0,•, 0,1)
.
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In a more explicit fashion, the modules appearing in Theorem 3.13 are

B2(C, ) ∩ C2,0 = { 1,0α+ 2,−1Y | α ∈ C1,0, Y ∈ C0,1, 0,1α+ 1,0Y = 0, 0,1Y = 0},
B2

1 ∩ C1,1 = { 1,0Y + 0,1α | α ∈ C1,0, Y ∈ C0,1, 0,1Y = 0},
B2(C0,•, 0,1) = { 0,1Y | Y ∈ C0,1},

J 2 = {Q ∈ C1,1 | 0,1Q = 0,∃βQ ∈ C2,0 : 0,1βQ + 1,0Q = 0},
Z2(N0, ) = {β ∈ C2,0 | 1,0β = 0, 0,1β = 0},

ker(%2) = {Q ∈ J 2 | 2,−1Q+ 1,0βQ ∈ B3(N , )},

Z2
2 =

V ∈ ker0,2
0,1

∣∣∣∣∣∣∣ ∃Q ∈ C1,1, β ∈ C2,0 :

0,1Q+ 1,0V = 0,

0,1β + 1,0Q+ 2,−1V ∈ B3(N , ),

1,0β + 2,−1Q ∈ B3(N , ).

 .

Third cohomology. Finally, the following result gives a more explicit presentation of theR-modules
involved in the description of coboundaries, cocycles, and cohomology of degree 3.

Theorem 3.15. We have the following commutative diagrams with exact rows and columns,

0

��

0

��

0

��
0 // B3(C, ) ∩ C3,0

� _

��

� � // B3(C, )� _

��

π1 // B3
1� _

��

// 0

0 // Z3(N0, )

��

� � // Z3(C, )

��

π1 // ker(ρ3)

��

// 0,

0 // Z3(N0, )
B3(C, )∩C3,0

��

// H3(C, )

��

// ker(ρ3)
B3

1

��

// 0

0 0 0

0

��

0

��

0

��
0 // B3

1 ∩ C2,1
� _

��

� � // B3
1� _

��

π2 // B3
2� _

��

// 0

0 // ker(%3)

��

� � // ker(ρ3)

��

π2 // Z3
2

��

// 0,

0 // ker(%3)
B3

1∩C2,1

��

// ker(ρ3)
B3

1

��

// Z
3
2

B3
2

��

// 0

0 0 0
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0

��

0

��

0

��
0 // B3

2 ∩ C1,2
� _

��

� � // B3
2� _

��

π3 // B3(C0,•, 0,1)� _

��

// 0

0 // Z3
2 ∩ C1,2

��

� � // Z3
2

��

π3 // Z3
3

��

// 0.

0 // B
3
2∩C1,2

Z3
2∩C1,2

��

// Z
3
2

B3
2

��

// Z3
3

B3(C0,•, 0,1)

��

// 0

0 0 0

We note that this result on the third cohomology of (C, ) involves the maps ρ3 : A3 → H4(N0, )
and %3 : J 3 → H4(N0, ), related to the fourth cohomology of (N0, ). Also, the submodule Z3

3 is
related to the 4-coboundaries of (N1, ).

Corollary 3.16. In the case when R is a field, the coboundary, cocycle, and cohomology spaces of
degree 3 admit the following splittings as vector spaces:

B3(C, ) ∼= (B3(C, ) ∩ C3,0)⊕ (B3
1 ∩ C2,1)⊕ (B3

2 ∩ C1,2)⊕B3(C0,•, 0,1),

Z3(C, ) ∼= Z3(N0, )⊕ ker(%3)⊕ (Z3
2 ∩ C1,2)⊕Z3

3 ,

H3(C, ) ∼=
Z3(N0, )

B3(C, ) ∩ C3,0
⊕ ker(%3)

B3
1 ∩ C2,1

⊕ Z
3
2 ∩ C1,2

B3
2 ∩ C1,2

⊕ Z3
3

B3(C0,•, 0,1)
.

Each of the terms appearing in the splittings of Corollary 3.16 are given as follows:

B3(C, ) ∩ C3,0 =

 1,0β + 2,−1Q

∣∣∣∣∣∣∣ β ∈ C2,0, Q ∈ C1,1,∃V ∈ C0,2 :

0,1β + 1,0Q+ 2,−1V = 0,

0,1Q+ 1,0V = 0,

0,1V = 0.

 ,

B3
1 ∩ C2,1 = { 0,1β + 1,0Q+ 2,−1V | β ∈ C2,0, Q ∈ C1,1, V ∈ C0,2, 0,1Q+ 1,0V = 0, 0,1V = 0},
B3

2 ∩ C1,2 = { 0,1Q+ 1,0V = 0 | Q ∈ C1,1, V ∈ C0,2, 0,1V = 0},
B3(C0,•, 0,1) = { 0,1V | V ∈ C0,2},
J 3 = {R ∈ C2,1 | 0,1R = 0,∃ϕR ∈ C3,0 : 0,1ϕR + 1,0R = 0},
Z3(N0, ) = {ϕ ∈ C3,0 | 1,0ϕ = 0, 0,1ϕ = 0},
ker(%3) = {R ∈ J 3 | 2,−1R+ 1,0ϕR ∈ B3(N0, )},

Z3
2 ∩ C1,2 =

S ∈ C1,2

∣∣∣∣∣∣∣ ∃R ∈ C2,1, ϕ ∈ C3,0 :

0,1S = 0, 0,1R+ 1,0S = 0,

0,1ϕ+ 1,0R+ 2,−1S ∈ B4(N0, ),

1,0ϕ+ 2,−1R ∈ B4(N0, ).

 ,

Z3
3 =

W ∈ ker0,3( 0,1)

∣∣∣∣∣∣∣∣∣∣
∃S ∈ C1,2, R ∈ C2,1, ϕ ∈ C3,0 :

0,1S + 1,0W = 0,

0,1R+ 1,0S + 2,−1W ∈ B4(N0, ),

0,1ϕ+ 1,0R+ 2,−1S ∈ B4(N0, ),

1,0ϕ+ 2,−1R ∈ B4(N0, ).

 .
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The proofs of Theorems 3.13, and 3.15 are analogous to the proof of Theorem 3.11.

3.5 Particular cases

In this part we consider some particular cases regarding the bigraded cochain complex (C, ),

= 0,1 + 1,0 + 2,−1.

The case 2,−1 = 0. In this part, we assume that 2,−1 = 0, which corresponds to the well-known
case of a double complex. Namely, (C, ) is a bigraded cochain complex, such that the bigraded
decomposition of the coboundary operator is

= 0,1 + 1,0.

The coboundary equations (3.3)-(3.7) read in this case

2
0,1 = 0, 0,1 1,0 + 1,0 0,1 = 0, 2

1,0 = 0,

which means that the bigraded components 0,1 and 1,0 are coboundary operators which commute
with each other in the graded sense.

The case of the double complex is a standard topic in the literature, since it naturally arises both
from algebraic and geometric contexts [46, Chapter XI, Section 6], [47, Section 2.4], and has several
applications [6, Chapter II]. However, the description of its cohomology is limited to explain that the
natural filtration

F pC• :=
⊕
i,j∈Z
i≥p

Ci,j

induces a spectral sequence which converges to the cohomology, and whose second page is explicitly
described in terms of the double complex, namely, Ep,q2 = Hp(Hq(C, 0,1), 1,0). For several
applications discussed in the literature, the computation of the second page of the spectral sequence
is sufficient to describe the cohomology. In this sense, we have not found a general scheme for the
computation of the cohomology of a double complex.

Theorems 3.11, 3.13, and 3.15 provide an explicit description of the low-degree cohomology of a
bigraded cochain complex which, of course, also holds for the double complex. We remark that in this
case, the null subcomplex is simply N = ker 0,1, so the cocycles and coboundaries of (N , ) are

Z(N , ) = ker 0,1 ∩ ker 1,0, and B(N , ) = 1,0(ker 0,1).

Furthermore, in the description of the cohomology of degree 1 provided by Theorem 3.11, we have

ker(ρ1) = {Y ∈ C0,1 | 0,1Y = 0, ∃αY ∈ C1,0 : 1,0Y + 0,1αY = 0, 1,0αY ∈ B1(N0, )}.
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On the other hand, the terms which simplify in the description of the cohomology of degree 2 of
a double complex are

B2(C, ) ∩ C2,0 = { 1,0α | α ∈ C1,0, ∃Y ∈ C0,1 : 0,1α+ 1,0Y = 0, 0,1Y = 0},
ker(%2) = {Q ∈ C1,1 | 0,1Q = 0,∃βQ ∈ C2,0 : 0,1βQ + 1,0Q = 0, 1,0βQ ∈ B3(N , )},

Z2
2 =

V ∈ ker0,2
0,1

∣∣∣∣∣∣∣ ∃Q ∈ C1,1, β ∈ C2,0 :

0,1Q+ 1,0V = 0,

0,1β + 1,0Q ∈ B3(N , ),

1,0β ∈ B3(N , ).

 .

In a similar fashion, the terms appearing in the description of the cohomology of degree three that
simplify in the case of the double complex are B3

1 ∩ C2,1, B3
2 ∩ C1,2, Z3

2 ∩ C1,2, and Z3
3 .

The case 0,1 = 0. We now consider a cochain complex (C•, ) endowed with a compatible
bigrading such that the decomposition of the coboundary operator is of the form = 1,0 + 2,−1.
This can be regarded as a particular case of our general scheme in which the operator of type (0, 1)
vanishes, 0,1 = 0. In this case, the coboundary property 2 = 0 is equivalent to

2
1,0 = 0, 1,0 2,−1 + 2,−1 1,0 = 0, 2

2,−1 = 0,

which means that the bigraded components 1,0 and 2,−1 are graded commutative coboundary
operators. Moreover, the null subcomplex is N = ker 2,−1. In particular, (N0, ) = (C•,0, 1,0),

Zp(N0, ) = ker( 1,0 : Cp,0 → Cp+1,0), and Bp(N0, ) = 1,0(Cp−1,0), ∀p ≥ 0.

It is well known that this class of cochain complexes arise in the context of regular Poisson
manifolds. In fact, the choice of a subbundle normal to the symplectic foliation of a regular Poisson
manifold induces a bigrading of the Lichnerowicz-Poisson complex such that the coboundary operator
is of this kind. Moreover, based on this fact, and motivated by the results in [74], a recursive scheme
for the computation of the cohomology of regular Poisson manifolds is provided in [62, Section 2]. Such
recursive scheme is similar to the one we have presented in Section 3.3, and leads to a description of
the Poisson cohomology in terms of short exact sequences that coincide with the bottom rows of the
diagrams of Proposition 3.2.

Finally, we remark that this class of cochain complexes also arise in the literature in the more
general context of Poisson foliations [65, Proposition 2.2], [66, Lemma 4.1], which are Poisson structures
such that the symplectic foliation admits an outer regularization.

The terms which appear in the description of the first cohomology which simplify in this case are

B1(N0, ) = 1,0(C0,0),

B1(C0,•, 0,1) = {0},
A1 = {Y ∈ C0,1 | 1,0Y = 0},

Z1(N0, ) = {α ∈ C1,0 | 1,0α = 0},
ker(ρ1) = {Y ∈ A1 | 2,−1Y ∈ 1,0(C0,0)}.
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In the description of the cohomology of degree two, the terms simplify to

B2(C, ) ∩ C2,0 = { 1,0α+ 2,−1Y | α ∈ C1,0, Y ∈ C0,1, 1,0Y = 0},
B2

1 ∩ C1,1 = { 1,0Y | Y ∈ C0,1},
B2(C0,•, 0,1) = {0},

J 2 = {Q ∈ C1,1 | 1,0Q = 0},
Z2(N0, ) = {β ∈ C2,0 | 1,0β = 0},

ker(%2) = {Q ∈ J 2 | 2,−1Q+ 1,0βQ ∈ B3(N , )},

Z2
2 =

V ∈ C0,2

∣∣∣∣∣∣∣ ∃Q ∈ C1,1, β ∈ C2,0 :

1,0V = 0,

1,0Q+ 2,−1V ∈ B3(N , ),

1,0β + 2,−1Q ∈ B3(N , ).

 .

In a similar fashion, most of the terms appearing in the description of the cohomology of degree
three simplify.



Chapter 4

Bigraded Cohomological Models in Poisson Geometry

In this chapter, we review some of the geometric structures which induce a bigraded cochain complex
such that the algebraic schemes developed in Chapter 3 can be applied. Furthermore, we show that
the cochain complex of a coupling twisted Poisson or Dirac structure on a foliated manifold is endowed
with a natural bigrading of this kind.

This chapter is organized as follows. Section 4.1 is devoted to describe the bigraded model on the
general setting of Lie algebroids with fixed involutive subbundle. Also, we describe how the geometric
structures described above fit in this general construction. In Section 4.2, we describe the algebraic
structure of the bigraded model for coupling structures. Finally, in Section 4.3 we introduce the
notions of coupling twisted Poisson and Dirac structures, show the correspondence with twisted Dirac
elements, and describe the bigraded model for the cohomology.

4.1 Bigrading on Lie algebroids

Let (E →M, q, [·, ·]E) be a Lie algebroid, and let E : Γ(∧•E∗)→ Γ(∧•E∗) be its de Rham differential,
in the sense of Definition 1.12. Suppose we are given a regular distribution V ⊂ E whose sections
are closed under the bracket of the Lie algebroid, [Γ(V ),Γ(V )]E ⊆ Γ(V ). Such regular distributions
will be called involutive. In addition, suppose we are given a vector bundle map p : E → E such that
p2 = p and im(p) = V . We say that p is a connection on E adapted to V . Denote H ≡ Hp := ker(p),
and let V ◦, H◦ ⊂ E∗ be the annihilators of V and H in E∗, respectively. Then, we have the splittings
Hp⊕V = E, and V ◦⊕H◦ = E∗. For simplicity, let us denote for each p, q ∈ Z, ∧p,qE∗ := ∧pV ◦⊗∧qH◦.
Then,

∧•E∗ =
⊕
p,q∈Z

∧p,qE∗, (4.1)

Moreover, the curvature Rp(a, b) ∈ Γ(∧2V ◦ ⊗ V ) of p is given by

Rp(a, b) := p[(IdE −p)a, (IdE −p)b]E , ∀a, b ∈ Γ(E),

and is the obstruction to the involutivity of Hp. On the other hand, for each K ∈ Γ(∧kE∗ ⊗ E), we
consider the insertion operator iK : Γ(∧•E∗)→ Γ(∧•E∗) of degree k − 1 given on α ∈ Γ(∧pE∗) by

iK α(a1, . . . , ap+k−1) =
∑

σ∈S(k,p−1)

(−1)σα(K(aσ1 , . . . , aσk), aσk+1
, . . . , aσp+k−1

) ∀a1, . . . , ap+k−1 ∈ Γ(E).

Here, S(k,p−1) is the set of shuffle permutations (see Remark 1.11). Moreover, the E-Lie derivative

L E
K : Γ(∧•E∗)→ Γ(∧•E∗) of degree k is defined in terms of the commutator of graded endomorphisms

by L E
K := [iK , E ] = iK ◦ E + (−1)k E ◦ iK .

67
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Following the Appendix C, we get the following result on the bigraded decomposition of the de
Rham differential.

Theorem 4.1. Let p ∈ Γ(∧2E∗⊗ V ) be a connection on the Lie algebroid (E, q, [·, ·]E) adapted to the
involutive subbundle V ⊆ E. The bigraded decomposition of the de Rham differential is

E = ( p
E)0,1 + ( p

E)1,0 + ( p
E)2,−1,

where, for each i, j ∈ Z, one has the property ( p
E)i,j(Γ(∧p,qE∗)) ⊆ Γ(∧p+i,q+jE∗) for all p, q ∈ Z. In

terms of the connection p, the bigraded components of E are given by

( p
E)0,1 = L E

p − iRp , ( p
E)1,0 = L E

IdE −p +2 iRp , ( p
E)2,−1 = − iRp .

This result implies that, whenever a Lie algebroid (E, q, [·, ·]E) is endowed with a projection map
p : E → E, p2 = p, with involutive image V = im(p), its de Rham complex is bigraded in the sense of
the complexes studied in Chapter 3. In other words, the results of Chapter 3 may be applied for the
computation of the Lie algebroid cohomology.

Let us propose an adequate bigraded model for the description of the cohomology of a Lie algebroid
(E, q, [·, ·]E) in which an involutive subbundle V ⊆ E is fixed. To this end, recall that the closedness
of Γ(V ) under the bracket of Γ(E) implies that, the triple (V, q|V , [·, ·]V ) is a Lie algebroid such that
[·, ·]V := [·, ·]E |Γ(V )×Γ(V ) is the restriction, and the natural inclusion ι : V ↪→ E is a morphism. In
particular, V has its own de Rham complex (Γ(∧•V ∗), V ).

Note that each complementary subbundle H ⊂ E, H ⊕V = E corresponds to a unique connection
p ∈ Γ(E∗ ⊗ V ) on the Lie algebroid adapted to V , via the relation ker(p) = H. We also observe that
the splitting V ◦⊕H◦ = E∗ induces an isomorphism H◦ ∼= V ∗, given by the dual of the inclusion map
ι∗ : E∗ � V ∗ restricted to H◦. For each p, q ∈ Z, this induces an isomorphism ∧p,qE∗ ∼= ∧pV ◦⊗∧qV ∗.
Let us denote Cp,q := ∧pV ◦⊗∧qV ∗, Cp,q := Γ(Cp,q), and C•,• :=

⊕
p,q∈Z Cp,q. We then have a bigraded

exterior algebra isomorphism Γ(∧•,•E∗) ∼= C•,•. Moreover, under this correspondence, the de Rham
complex (Γ(∧•E∗), E) induces a cochain complex structure on C•.

Observe that the bigraded model C•,• only depends of V , but the bigraded exterior algebra
isomorphism between Γ(∧•E∗) and C• do depend of the choice of p. So, the coboundary operator
induced on C• also depends on p. Since the de Rham complex (Γ(∧•E∗), E) is bigraded and such
that E = ( p

E)0,1+( p
E)1,0+( p

E)2,−1, it follows that the coboundary operator p on C• has a bigraded
decomposition of the same type, (C•,•, p = 0,1 + 1,0 + 2,−1).

We now describe each of the bigraded components 0,1, 1,0, and 2,−1 of the coboundary operator
p : C• → C•.

• The operator V
0,1. Observe that the coboundary operator 0,1 is independent of the choice of

the connection p. In fact, the bigraded operator 0,1 is an extension of the de Rham differential

V of C0,• = Γ(∧•V ∗) to the whole bigraded space C•,•, in the sense that 0,1|Γ(∧•V ∗) = V . In
fact, the value of 0,1α, with α ∈ Γ(∧pV ◦), on v ∈ Γ(V ) and a1, . . . , ap ∈ Γ(E) is

0,1α(v; a1, . . . , ap) = Lv α(a1, . . . , ap) = Lq(v)(α(a1, . . . , ap))−
p∑
i=1

α(a1, . . . , [v, ai]E , . . . , ap).

Since 0,1 is a derivation, these relations determine its value on the whole C•,•. It now becomes
clear that 0,1 is in fact independent of the choice of p.
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• The operator p
1,0. Proceeding as before, the differential p

1,0 on α ∈ Γ(∧pV ◦) is given on
a1, . . . , ap+1 by

p
1,0α(a1, . . . , ap+1) =

∑
σ∈S(1,p)

(−1)σ Lq((Id− p)aσ1 )(α(aσ2 , . . . , aσp+1))

−
∑

σ∈S(2,p−1)

(−1)σα((Id−p)[aσ1 , aσ2 ]E , aσ3 , . . . , aσp+1).

Similarly, if µ ∈ Γ(∧qV ∗), then for v1, . . . , vq ∈ Γ(V ), and a ∈ Γ(E),

p
1,0µ(a; v1, . . . , vq) = Lq((Id− p)a)(µ(v1, . . . , vq))−

q∑
i=1

µ(v1, . . . ,p[(Id−p)a, vi]E , . . . , vq).

• The operator p
2,−1. This operator is given by the curvature Rp ∈ Γ(∧2V ◦⊗V ) of p. Viewing

each η ∈ Cp,q as a p-linear skew-symmetric map η : Γ(E) × · · · × Γ(E) → Γ(∧qV ∗) vanishing if
any argument lies in Γ(V ), the operator p

2,−1 is readily described by the curvature, as follows:

p
2,−1η(a1, . . . , ap+2) = −(−1)p

∑
σ∈S(2,p)

(−1)σ iRp(aσ1 ,aσ2 )(η(aσ3 , . . . , aσp+2)).

The operator V
0,1 is the extension of the de Rham differential of V , and p

1,0 is the covariant
exterior derivative of p. The operator p

2,−1 is the negative of the insertion of the curvature.
In some particular contexts, the formulas presented in the previous general context of a Lie

algebroid with an involutive subbundle can be simplified. This is in fact the case when V ⊂ E can
be realized as the kernel of a surjective Lie algebroid morphism π : E → A onto (A → N, qA, [·, ·]A)
covering some map M → N [7, Section 3]. In this case, E is called an extension of A via V , and the
above formulas get a simpler formula when applied to the Hp-lifting of sections of A. Another case
in which such formulas simplify are E = TM is the tangent Lie algebroid. In such context, Frobenius
Theorem implies that V is the tangent bundle of some foliation V, V = TV. By evaluating in local
V-projectable vector fields, the above formulas also simplify.

4.1.1 Geometric applications

We now briefly describe some well-known geometric settings in which the corresponding Lie algebroid
is naturally equipped with a connection.

Example 4.2 (Regular Poisson structures). Let (M,Π) be a regular Poisson manifold, with symplectic
foliation (S, ωS), and consider its cotangent Lie algebroid (T ∗M,Π], {·, ·}Π). The annihilator of the
characteristic distribution V := Ann(TS) is a subbundle of T ∗M which coincides with the kernel of
the anchor map, V = ker(Π]). Then, it is clear from (1.12) that {Γ(V ),Γ(V )}Π = {0}. Furthermore,
the involutivity of TS implies {Γ(V ),Γ(T ∗M)}Π ⊆ Γ(V ). Therefore, by taking any vector subbundle
H ⊂ T ∗M such that H ⊕ V = T ∗M , it follows from Corollary C.7 that the corresponding bigrading
of the Lichnerowicz-Poisson operator is

Π = ( Π)1,0 + ( Π)2,−1.
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Furthermore, Corollary C.6 implies that ( Π)2,−1 is the zero operator if and only if the subbundle
H ⊆ T ∗M is involutive, {Γ(H),Γ(H)}Π ⊆ Γ(H). Because of Lemma B.3, this is equivalent to the
following geometric condition: if N ⊆ T ∗M is the annihilator of H, then every X ∈ Γ(N)∩ aut(M,S)
is Poisson, X ∈ Poiss(M,Π). In other words, N is a Poisson connection if and only if ( Π)2,−1 = 0 (see
Example 2.12). In particular, this implies that Π must be transversally constant [62, pp. 959-960],
[64, pp. 49-50]. H

Example 4.3 (Poisson foliations). All of the arguments in the previous example are valid for the
case of regular Poisson foliations. Given a Poisson foliation (M,F , P ), one can take V := Ann(TF).
Then, it is clear that V is an Abelian ideal of (T ∗M, {·, ·}P ) such that V ⊆ ker(P ]). By fixing H such
that H ⊕ V = T ∗M , the Lichnerowicz-Poisson operator has the form P = ( P )1,0 + ( P )2,−1 [65,
Proposition 2.2], [66, Lemma 4.1], and the term ( P )2,−1 vanishes if and only if V is the annihilator
of a Poisson connection. H

Example 4.4 (Extensions of Lie algebroids). Let π : E → A be a Lie algebroid epimorphism covering
the base map p : M → N , and let V := ker(π). Observe that for each m ∈M , the image of dual map
π∗m : A∗p(m) → E∗m is V ◦m. This implies that the image of π∗ : Γ(∧•A∗)→ Γ(∧•E∗) generates Γ(∧•V ◦).
Moreover, for each v, w ∈ Γ(V ), and α ∈ Γ(A∗), we have

π∗α[v, w]E = Lq(v)(π
∗α(w))− Lq(w)(π

∗α(v))− π∗ dA α(v, w) = 0.

Since α ∈ Γ(A∗) is arbitrary, this implies that [v, w]E ∈ Γ(Ann(V ◦)) = Γ(V ). Therefore, V is
involutive. Now, consider the bigraded model C•,• =

⊕
p,q∈Z Cp,q described above, where Cp,q =

Γ(∧pV ◦ ⊗ ∧qV ∗). Then, the C∞(N)-module isomorphism π∗ : Γ(∧•A∗)→ Γ(∧•V ◦) extends to

π∗ : Γ(∧•A∗)⊗C∞(N) Γ(∧•V ∗)→ C•,•.

Now, consider a connection p adapted to V ⊂ E. For each a ∈ Γ(A), define h(a) ∈ Γ(H) by the
relation, and π∗α(h(a)) = p∗(α(a)), for all α ∈ Γ(A). This induces a linear A-connection ∇ ≡ ∇h on
V , given by

∇h : Γ(A)× Γ(V )→ Γ(V ), ∇hav := [h(a), v]E , ∀a ∈ Γ(A), v ∈ Γ(V ).

Consider also the curvature 2-form σp ∈ Γ(∧2A∗) ⊗C∞(N) Γ(V ), given on a, b ∈ Γ(A) by σp(a, b) :=
[h(a), h(b)] − h[a, b]. Our last isomorphism induces a coboundary operator ∂p on Γ(∧•A∗) ⊗C∞(N)

Γ(∧•V ∗), and the formulas for ∂p
1,0, ∂V0,1, ∂p

2,−1 simplify to [7, Prop. 3.2]

∂V1,0η(a1, . . . , ap) = (−1)p dV (η(a1, . . . , ap)),

∂p
0,1η(a1, . . . , ap+1) =

∑
(1,p)

(−1)σ∇∗aσ1
(η(aσ2 , . . . , aσp+1))−

∑
(2,p−1)

(−1)ση([aσ1 , aσ2 ]A, aσ3 , . . . , aσp+1),

∂p
2,−1η(a1, . . . , ap+2) = −(−1)p

∑
(2,p)

(−1)τ iσp(aτ1 ,aτ2 ) η(aτ3 , . . . , aτp+1),

for all η ∈ Γ(∧pA∗)⊗C∞(N) Γ(∧qV ∗), and a1, . . . , ap+2 ∈ Γ(A). H

Example 4.5 (De Rham complex on foliated manifolds). Let (M,V) be a foliated manifold, and
let V := TV. As a consequence of Theorem 4.1, for any connection γ on (M,V), the bigraded
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decomposition of the exterior derivative is of the form d = dγ0,1 + dγ1,0 + dγ2,−1 [61]. Observe that in the
particular case when the leaves of V are given by the fibers of a surjective submersion p : M → N ,
V is the kernel of the Lie algebroid map π = p∗ : TM → TN , so this example fits in the previous
case of extensions of Lie algebroids. However, even though the leaves V of M are not the fibers of a
submersion, locally they are. So, the formulas of the previous example still hold for the bigraded model
C•,• = Γ(∧•V ◦ ⊗ ∧•V ∗) when we evaluate on V-projectable vector fields. In fact, for u1, . . . , up+2 ∈
aut(M,V), and η ∈ Cp,q we have

V
1,0η(u1, . . . , up) = (−1)p dV (η(u1, . . . , up)),

p
0,1η(u1, . . . , up+1) =

∑
(1,p)

(−1)σ Luσ1
(η(uσ2 , . . . , uσp+1))−

∑
(2,p−1)

(−1)ση([uσ1 , uσ2 ], uσ3 , . . . , uσp+1),

p
2,−1η(u1, . . . , up+2) = −(−1)p

∑
(2,p)

(−1)σ iRp(uσ1 ,uσ2 ) η(uσ3 , . . . , uσp+1).

H

4.2 The bigraded model for coupling structures

4.2.1 The Dirac structure of a foliation

There are two Lie algebroids associated with a regular foliation. One of them is the Lie algebroid of
the tangent bundle to the foliation. The other one is the Lie algebroid of the Dirac structure of the
regular foliation.

Let V be a regular foliation on the manifold M , with tangent bundle V := TV. Let us denote
by V ◦ := Ann(V ) its annihilator. We also denote the Whitney sum of V and V ◦ by V := V ⊕ V ◦.
It is clear that V ⊂ TM is a maximally isotropic subbundle of TM with respect to the canonical
pairing. Furthermore, V is a Dirac structure (with the standard Dorfman bracket (1.8)). Indeed,
given X,Y ∈ Γ(V ), and α, β ∈ Γ(V ◦), we have

JX ⊕ α, Y ⊕ βK = [X,Y ]⊕ (LX β − iY dα) = [X,Y ]⊕ (LX β − LY α).

Here, we have applied the fact that iY α = 0 and Cartan’s formula. Since V is involutive, the
vectorial component is again leaf-tangent, [X,Y ] ∈ Γ(V ). Furthermore, the fact that each of LX β
and LY α are sections of V ◦ follow from standard computations and the involutivity of V . Therefore,
JX⊕α, Y ⊕βK ∈ Γ(V), and hence V is a Dirac structure. As explained in Subsection 1.3.1, this means
that V has a natural structure of Lie algebroid, where the Lie bracket [·, ·]V is just the restriction of
the Dorfman bracket.

The bigrading of the Lie algebroid V. Consider the Lie algebroid (V, q, [·, ·]V), where the anchor
map and the bracket are the restrictions of the projection pTM : TM → TM and of the Dorfman
bracket J·, ·K, respectively. Let us describe the bigraded properties of its de Rham differential V,

V : Γ(∧•V∗)→ Γ(∧•V∗),

with respect to the canonical splitting V = V ⊕ V ◦. Denote by p : V → V the projection over V
along the splitting V = V ⊕ V ◦. The horizontal and vertical distributions of p are {0} ⊕ V ◦ and
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V ⊕ {0}, respectively. Then, the vector bundle ∧•V acquires structure of bigraded (Z × Z-graded)
vector bundle. Denoting, for each p, q ∈ Z, ∧p,qV := ∧pV ◦ ⊗ ∧qV , we get

∧•,•V :=
⊕
p,q∈Z

∧p,qV.

Following the Appendix C, by the definition of the anchor and Dorfman bracket, we observe that the
p-vertical distribution V ⊕ {0} is involutive, and the p-horizontal distribution satisfies {0} ⊕ V ◦ =
ker(q). Since each of the hypotheses of Corollary C.8 hold, we conclude that the de Rham differential
of the Lie algebroid V has bidegree (0, 1), V = ( p

V)0,1.
Let us use this fact to describe also the bigraded properties of the Schouten bracket of the Lie

algebroid on V,

[·, ·]V : Γ(∧•V)× Γ(∧∗V)→ Γ(∧•+∗−1V)

(see Section 1.2). Recall that the Schouten bracket is characterized in terms of the graded commutator
of endomorphisms on Γ(∧•V∗) by

i[η,η′]V = [[iη, V], iη′ ] ∀η, η′ ∈ Γ(∧•V). (4.2)

We claim that the Schouten bracket has bidegree (0,−1). Indeed, suppose that η ∈ Γ(∧p,qV) and
η′ ∈ Γ(∧p′,q′V). Then, iη and iη′ have bidegree (−p,−q) and (−p′,−q′), respectively. Since the
bidegree of V is (0, 1), it follows from (4.2) that i[η,η′]V has bidegree (−p− p′,−q− q′+ 1) (the sum of
the bidegrees of V, iη, and iη′). In consequence, [η, η′]V must have bidegree (p+ p′, q+ q′ − 1), which
is the sum of (p, q) (the bidegree of η), (p′, q′) (the bidegree of η′) and (0,−1). Since η ∈ Γ(∧p,qV)
and η′ ∈ Γ(∧p′,q′V) are arbitrary, we conclude that the Schouten bracket of (V, q, [·, ·]V) has bidegree
(0,−1). In other words, (Γ(∧•,•V), [·, ·]V) is a bigraded R-Lie algebra of bidegree (0,−1).

Viewing η ∈ Γ(∧p,qV) and η′ ∈ Γ(∧p′,q′V) as C∞(M)-multilinear maps Γ(TM)× · · · × Γ(TM)→
Γ(∧•V ), their exterior product η ∧ η′ and the Schouten bracket [η, η′]V evaluated on V-projectable
vector fields u1, . . . , up+p′ ∈ aut(M,V) are given by

(η ∧ η′)(u1, . . . , up+p′) = (−1)p
′q
∑

σ∈S(p,p′)

(−1)ση(uσ1 , . . . , uσp) ∧ η′(uσp+1 , . . . , uσp+p′ ),

[η, η′]V(u1, . . . , up+p′) = (−1)p
′(q−1)

∑
σ∈S(p,p′)

(−1)σ[η(uσ1 , . . . , uσp), η
′(uσp+1 , . . . , uσp+p′ )].

Here, the wedge products and brackets on each summand in the right-hand sides are the standard
exterior product and Schouten-Nijenhuis bracket of multivector fields. If η = α⊗A, and η′ = β ⊗B,
where α, β ∈ Γb(∧•V ◦), and A,B ∈ Γ(∧•V ), then

(α⊗A) ∧ (β ⊗B) = (−1)p
′q(α ∧ β)⊗ (A ∧B), (4.3)

[α⊗A, β ⊗B]V = (−1)p
′(q−1)(α ∧ β)⊗ [A,B]. (4.4)

In particular, for leaf-tangent multivector fields A,B ∈ Γ(∧•V ) = Γ(∧0,•V), the Schouten bracket on
Γ(∧0,•V) coincides with the Schouten-Nijenhuis bracket of multivector fields restricted to Γ(∧•V ).

Finally, we remark that, for each η ∈ Γ(∧•V), the adjoint operator adη : Γ(∧•V) → Γ(∧•V),
given by adη(η

′) := [η, η′]V, is a graded derivation of the graded Poisson algebra (Γ(∧•V),∧, [·, ·]V) of
bidegree (p, q − 1).
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4.2.2 Derivations induced by bivectors and 3-forms.

Recall from Section 1.4 that the de Rham differential of the Lie algebroid of a twisted Poisson structure
is the sum of two operators: the first of them is, as usual, the adjoint of the bivector with respect to
the Schouten-Nijenhuis bracket of multivector fields. The other one is defined in terms of both the
bivector and the background 3-form. This idea suggest that one can define bigraded derivations on
the exterior algebra of the Dirac structure of a regular foliation, by means of a leaf-tangent bivector
field and a 3-form.

In what follows, let (M,V) be a regular foliation, and denote V := TV, V ◦ := Ann(TV), V :=
V ⊕ V ◦, ∧p,qV := ∧pV ◦ ⊗∧qV . Also, consider a leaf-tangent bivector field P ∈ Γ(∧2V ), and a 3-form
ψ ∈ Γ(∧3T ∗M).

Derivations of bidegree (0,1). Consider the derivation jP,ψ : Γ(∧•V ) → Γ(∧•V ) of degree 1,

defined as in (1.13). Let us extend it to a bigraded derivation j
(0,1)
P,ψ : Γ(∧•,•V)→ Γ(∧•,•V) of bidegree

(0, 1) by means of the formula

j
(0,1)
P,ψ (α⊗A) := (−1)pα⊗ jP,ψ A, ∀α ∈ Γ(∧pV ◦), A ∈ Γ(∧qV ). (4.5)

The fact that jP,ψ vanishes on C∞(M) implies that j
(0,1)
P,ψ is well defined. On the other hand, the

derivation property readily follows from (4.3). In fact, given η ∈ Γ(∧p,qV), and η′ ∈ Γ(∧p′,q′V) of the
form η = α⊗A, and η′ = β ⊗B, we have

j
(0,1)
P,ψ (η ∧ η′) = (−1)p

′q j
(0,1)
P,ψ ((α ∧ β)⊗ (A ∧B)) = (−1)p

′q+p+p′(α ∧ β)⊗ jP,ψ(A ∧B)

= (−1)p
′q+p+p′(α ∧ β)⊗ (jP,ψ A ∧B + (−1)qA ∧ jP,ψ B)

= (−1)p(α⊗ jP,ψ A) ∧ (β ⊗B) + (−1)p+p
′+q(α⊗A) ∧ (β ⊗ jP,ψ B)

= j
(0,1)
P,ψ (α⊗A) ∧ (β ⊗B) + (−1)p+q(α⊗A) ∧ j

(0,1)
P,ψ (β ⊗B)

= j
(0,1)
P,ψ η ∧ η′ + (−1)|η|η ∧ j

(0,1)
P,ψ η′.

So, j
(0,1)
P,ψ is the graded derivation which coincides with jP,ψ on Γ(∧•V ) and vanishing on Γ(∧•V ◦).

Derivations of degree (1,0). We now define a graded derivation j
(1,0)
P,ψ : Γ(∧•,•V) → Γ(∧•,•V) of

bidegree (1, 0) as follows. For each η ∈ Γ(∧p,qV), u1, . . . , up+1 ∈ Γ(V ), and µ1, . . . , µq ∈ Γ(T ∗M), set

j
(1,0)
P,ψ η(u1, . . . , up+1;µ1, . . . , µq) := (−1)p

∑
σ∈S(p,1)

τ∈S(1,q)

(−1)σ(−1)τη(uσ1 , . . . , uσp ; iP ]µτ1 iuσp+1
ψ, µτ2 , . . . , µτq).

Since P ∈ Γ(∧2V ), it is clear that j
(1,0)
P,ψ η vanishes if any of µi lies in Γ(V ◦).

Lemma 4.6. For each P ∈ Γ(∧2V ) and ψ ∈ Γ(∧3T ∗M), the operator j
(1,0)
P,ψ : Γ(∧•,•V)→ Γ(∧•,•V) is

a derivation.
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Proof. To save some space, denote (−1)σ+τ := (−1)σ(−1)τ , and consider the tensor field t ≡ tP,ψ

given by

t : Γ(T ∗M)× Γ(TM)→ Γ(T ∗M), tµ,u := iP ]µ iu ψ.

Now, take η ∈ Γ(∧p,qV), η′ ∈ Γ(∧p′,q′V), u1, . . . , up+p′+1 ∈ Γ(TM), and µ1, . . . , µq+q′ ∈ Γ(T ∗M). By
definition, we have

j
(1,0)
P,ψ (η ∧ η′)(u1, . . . , up+p′+1;µ1, . . . , µq+q′) =

(−1)p+p
′ ∑
σ∈S(p+p′,1)

τ∈S(1,q+q′−1)

(−1)σ+τ (η ∧ η′)(uσ1 , . . . , uσp+p′ ; tµτ1 ,uσp+p′+1
, µτ2 , . . . , µτq+q′ ) =

(−1)p+p
′+p′q

∑
σ∈S(p,p′,1)

τ∈S(1,q+q′−1)

(−1)σ+τ [η(uσ1 , . . . , uσp) ∧ η′(uσp+1 , . . . , uσp′ )](tµτ1 ,uσp+p′+1
, µτ2 , . . . , µτq+q′ ).

Now, observe that [η(uσ1 , . . . , uσp)∧η′(uσp+1 , . . . , uσp′ )](tµτ1 ,uσp+p′+1
, µτ2 , . . . , µτq+q′ ) is the insertion of

tµτ1 ,uσp+p′+1
in the exterior product of the multivector fields η(uσ1 , . . . , uσp), and η′(uσp+1 , . . . , uσp′ ),

all evaluated in µτ2 , . . . , µτq+q′ . Since the insertion is a graded derivation on multivector fields, the
previous sum splits into two, namely,∑

σ∈S(p,p′,1)

τ∈S(1,q+q′−1)

(−1)σ+τ [η(uσ1 , . . . , uσp) ∧ η′(uσp+1 , . . . , uσp′ )](tµτ1 ,uσp+p′+1
, µτ2 , . . . , µτq+q′ ) =

∑
σ∈S(p,p′,1)

τ∈S(1,q−1,q′)

(−1)σ+τη(uσ1 , . . . , uσp ; tµτ1 ,uσp+p′+1
, µτ2 , . . . , µτq)η

′(uσp+1 , . . . , uσp+p′ ;µτq+1 , . . . , µτq+q′ )+

(−1)q
∑

σ∈S(p,p′,1)

τ∈S(1,q,q′−1)

(−1)σ+τη(uσ1 , . . . , uσp ;µτ2 , . . . , µτq+1)η′(uσp+1 , . . . , uσp+p′ ; tµτ1 ,uσp+p′+1
, µτq+2 , . . . , µτq+q′ )

= (−1)p
′∑

σ∈S(p,1,p′)
τ∈S(1,q−1,q′)

(−1)σ+τη(uσ1 , . . . , uσp ; tµτ1 ,uσp+1
, µτ2 , . . . , µτq)η

′(uσp+2 , . . . , uσp+p′+1
;µτq+1 , . . . , µτq+q′ )

+
∑

σ∈S(p,p′,1)

τ∈S(q,1,q′−1)

(−1)σ+τη(uσ1 , . . . , uσp ;µτ1 , . . . , µτq)η
′(uσp+1 , . . . , uσp+p′ ; tµτq+1 ,uσp+p′+1

, µτq+2 , . . . , µτq+q′ ).

Here, we have rearranged the indices of each of the two sums, while keeping track of the corresponding
changes of sign. On the other hand, straightforward computations give

(j
(1,0)
P,ψ η ∧ η′)(uσ1 , . . . , uσp+p′+1

;µτ1 , . . . , µτq+q′ ) =

(−1)p+p
′q
∑

σ∈S(p,1,p′)
τ∈S(1,q−1,q′)

(−1)σ+τη(uσ1 , . . . , uσp ; tµτ1 ,uσp+1
, µτ2 , . . . , µτq)η

′(uσp+2 , . . . , uσp+p′+1
;µτq+1 , . . . , µτq+q′ ),
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and

(−1)p
′+q+p′q(η ∧ j

(1,0)
P,ψ η′)(uσ1 , . . . , uσp+p′+1

;µτ1 , . . . , µτq+q′ ) =∑
σ∈S(p,p′,1)

τ∈S(q,1,q′−1)

(−1)σ+τη(uσ1 , . . . , uσp ;µτ1 , . . . , µτq)η
′(uσp+1 , . . . , uσp+p′ ; tµτq+1 ,uσp+p′+1

, µτq+2 , . . . , µτq+q′ ).

Taking into account the fact that the sum at the beginning of the proof has the factor (−1)p+p
′+p′q,

the result follows. �

Derivations of bidegree (k,−1). Now suppose we are given a (k + 1)-form Θ ∈ Γ(∧k+1T ∗M)
vanishing whenever two of its arguments are leaf-tangent vector fields, that is, Θ ∈ Γ(∧kV ◦ ⊗ T ∗M).

Let us define j
(k,−1)
Θ : Γ(∧•,•V)→ Γ(∧•,•V) on η ∈ Γ(∧p,qV) and u1, . . . , uk+p ∈ Γ(TM) by

j
(k,−1)
Θ η(u1, . . . , uk+p) := (−1)p+k−1

∑
σ∈S(k,p)

(−1)σ iΘ(uσ1 ,...,uσk ) η(uσk+1
, . . . , uσk+p

). (4.6)

Observe that each summand is the insertion of the 1-form Θ(uσ1 , . . . , uσk) := iuσk . . . iuσ1
Θ in the

q-vector field η(uσk+1
, . . . , uσk+p

). Since Θ vanishes whenever two of its arguments lie in Γ(V ), we get

that j
(k,−1)
Θ η ∈ Γ(∧p+k,q−1V). Moreover, we observe that j

(k,−1)
Θ = 0 if and only if Θ ∈ Γ(∧3V ◦).

To show the graded derivation property, note that

j
(k,−1)
fΘ = f j

(k,−1)
Θ ∀f ∈ C∞(M).

On the other hand, it is clear that Θ is locally the sum of elements of the form f dα, where f ∈ C∞(M),
and α ∈ Γ(∧kV ◦). This can be observed, for instance, in a coordinate chart adapted to the foliation

V. So, to show that j
(k,−1)
Θ is a graded derivation for every Θ ∈ Γ(∧kV ◦ ⊗ T ∗M), it suffices to verify

this property in the case Θ = dα, where α ∈ Γ(∧pV ◦).

Lemma 4.7. Let α ∈ Γ(∧kV ◦) be a k-form vanishing on leaf-tangent vector fields, and consider its
adjoint operator adα : Γ(∧•,•V)→ Γ(∧•,•V) with respect to the Schouten bracket of V. Then,

j
(k,−1)
dα = adα .

In particular, j
(k,−1)
dα is a derivation of bidegree (k,−1).

Proof. Fix η ∈ Γ(∧p,qV), and V-projectable vector fields u1, . . . , up+k ∈ aut(M,V). Then,

adα η(u1, . . . , up+k) = (−1)p
∑

σ∈S(p,k)

(−1)σ[α(uσ1 , . . . , uσk), η(uσk+1
, . . . , uσk+p

)]

= −(−1)p
∑

σ∈S(p,k)

(−1)σ id(α(uσ1 ,...,uσk )) η(uσk+1
, . . . , uσk+p

).

Since each uσi is V-projectable, α ∈ Γ(∧kV ◦), and η values on Γ(∧qV ), the following equality holds
for each σ ∈ S(p,k):

id(α(uσ1 ,...,uσk )) η(uσk+1
, . . . , uσk+p

) = (−1)k idα(uσ1 ,...,uσk ) η(uσk+1
, . . . , uσk+p

).
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Hence,

adα η(u1, . . . , up+k) = (−1)p+k−1
∑

σ∈S(p,k)

(−1)σ idα(uσ1 ,...,uσk ) η(uσk+1
, . . . , uσk+p

) = j
(k,−1)
dα η(u1, . . . , up+k).

�

4.2.3 Extension of the Schouten bracket

The present construction, given in the context of foliated manifolds, is based on the one in [50,
Subsection 4.2.1] for the case of fiber bundles (see also [16, Proposition 3.1]). Since this work is
devoted to the study of coupling structures on foliated manifolds, we find convenient to give this
construction in this setting.

Let (M,V) be a regular foliated manifold, and denote V := TV, V ◦ := Ann(V ). Recall that the
algebra of V-projectable vector fields aut(M,V) consists of the vector fields u ∈ Γ(TM) such that
[u, Y ] ∈ Γ(V ) for all Y ∈ Γ(V ). As a consequence of this property, we get that aut(M,V) preserves
Γ(∧•V), where V := V ⊕ V ◦. Therefore, the Lie bracket [·, ·]V on Γ(V), given by the restriction of the
Dorfman bracket, can be extended to aut(M,V)⊕Γ(V ◦) (just recall that Γ(V ) ⊂ aut(M,V)). Indeed,
for u, v ∈ aut(M,V) and α, β ∈ Γ(V ◦), one can set

[u⊕ α, v ⊕ β]V := [u, v]⊕ (Lu β − Lv α),

which defines an R-Lie bracket on aut(M,V)⊕ Γ(V ◦) coinciding with the Dorfman bracket on Γ(V).
In what follows, we generalize this extension to the Schouten bracket of [·, ·]V in Γ(∧•,•V). To do

so, we give an equivalent definition of it by using use some Vinogradov calculus. Our goal is to replace
the description (4.2), which was given in terms of graded endomorphisms on Γ(∧•V∗), to a new one
presented in terms of graded operators on Γ(∧•T ∗M).

Insertion operators and the Vinogradov bracket. Recall that, given two graded operators D
and E on Γ(∧•T ∗M) with corresponding degrees d and e, their graded commutator is defined by
[D,E] := D ◦ E − (−1)d·eE ◦ D. It is well-known that this bracket induces a graded Lie algebra
structure of degree zero on the space of graded operators, which means that the graded versions of
the skew-symmetry and the Jacobi identity hold. On the other hand, the Vinogradov bracket of D
and E is given by

JD,EK := [[D,d], E],

where d denotes the exterior differential on Γ(∧•T ∗M). This is a bracket of degree 1 which satisfies the
graded Jacobi identity (see, for instance, [80, Section 2.2]), but is not graded skew-symmetric. However,
if the graded operators in question commute, then their Vinogradov bracket satisfies skew-symmetry.

Lemma 4.8. If [D,E] = 0, then JD,EK = −(−1)(d+1)(e+1)JE,DK.

Proof. By the graded Jacobi identity and skew-symmetry of the graded commutator, we get

0 = [[D,E],d] = [D, [E,d]] + (−1)e[[D,d], E] = −(−1)d(e+1)[[E,d], D] + (−1)e[[D,d], E]

= −(−1)d(e+1)JE,DK + (−1)eJD,EK,

which proves the statement. �
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Given a multivector field A ∈ Γ(∧qTM), the operator iA is the insertion of multivector fields,
and is characterized by the relation iA = ia1 ◦ · · · ◦ iaq , if A = a1 ∧ · · · ∧ aq. Furthermore, for
each multivector-valued form η ∈ Γ(∧pT ∗M ⊗ ∧qTM), and each ω ∈ Γ(∧kT ∗M), define iη ω ∈
Γ(∧k+p−qT ∗M) by

iη ω(X1, . . . , Xk+p−q) :=
∑

σ∈S(p,k−q)

(−1)σ iη(Xσ1 ,...,Xσp ) ω(Xσp+1 , . . . , Xσk+p−q) ∀Xi ∈ Γ(TM).

This gives a graded operator iη on Γ(∧•T ∗M) of degree p − q, called the insertion of η. The
correspondence η 7→ iη is an injection of Γ(∧•T ∗M ⊗∧•TM) into the space of graded endomorphisms
of Γ(∧•T ∗M). We also define the Lie operator Lη := [iη,d], where in the right-hand side we have the
bracket of graded endomorphisms on Γ(∧•T ∗M). In the case when η = α ⊗ A, with α ∈ Γ(∧•T ∗M)
and A ∈ Γ(∧•TM), one has iη = mα ◦ iA, where mα is the left multiplication by α, and iA is the
insertion of A. Furthermore, since the exterior product of multivector-valued forms satisfies formula
(4.3), we have the property iη∧η = iη ◦ iη′ .

It is well known that, in this generality, the space of insertion operators is not closed under the
Vinogradov bracket. However, in the particular case when the multivector-valued differential forms
are taken from Γ(∧•,•V), viewed as a subset of Γ(∧•T ∗M ⊗ ∧•TM), we recover the bracket (4.2).

Lemma 4.9. The bracket [η, η′]V of η ∈ Γ(∧p,qV) and η′ ∈ Γ(∧p′,q′V), given in (4.2), is characterized
in terms of the Vinogradov bracket of their insertions on Γ(∧•T ∗M ⊗ ∧•TM), namely

i[η,η′]V = [Lη, iη′ ]. (4.7)

Proof. By the injectivity of the correspondence η 7→ iη, and the R-bilinearity of both sides, it suffices to
check the identity for η = α⊗A and η′ = β⊗B, where α, β ∈ Γb(∧•V ◦) are basic, and A,B ∈ Γ(∧•V ).
By standard computations with the commutator of graded endomorphisms (see, for instance, [80,
Lemma 2.2]),

[Lη, iη′ ] = [[iη,d], iη′ ] = [[mα ◦ iA,d],mβ ◦ iB] = [mα ◦ LA +(−1)p+q+1mdα ◦ iA,mβ ◦ iB]

= [mα ◦ LA,mβ ◦ iB] + (−1)p+q+1[mdα ◦ iA,mβ ◦ iB].

Since β,dα ∈ Γ(∧•V ◦), and A,B ∈ Γ(∧•V ), it follows that mdα, mβ, iB and iA commute with each
other, so [mdα ◦ iA,mβ ◦ iB] = 0. Similarly, [mα ◦LA,mβ ◦ iB] = (−1)p

′(q−1)mα ◦mβ ◦ [LA, iB]. Hence,

[Lη, iη′ ] = (−1)p
′(q−1)mα ◦mβ ◦ [LA, iB] = (−1)p

′(q−1)mα∧β ◦ i[A,B] = i[η,η′]V ,

where in the last step we have applied (4.4). �

The bracket [·, ·]V . Our goal is to extend the bracket [·, ·]V on Γ(∧•,•V) to a bracket [·, ·]V on a
slightly larger bigraded space V •,•, via the characterization (4.7). This new bigraded space is defined
as follows: For each p ∈ Z, denote by V p,1 the space of p-forms vanishing along V and valued in
V-projectable vector fields,

V p,1 := {η ∈ Γ(∧pV ◦ ⊗ TM) | η(u1, . . . , up) ∈ aut(M,V), ∀u1, . . . , up ∈ aut(M,V)}.

The local generators of V p,1 are given as α ⊗ u, for α ∈ Γb(∧pV ◦) and u ∈ aut(M,V). In particular,
V 0,1 = aut(M,V). For p, q ∈ Z with q 6= 1, put V p,q := Γ(∧p,qV), and define V •,• :=

⊕
p,q∈Z V p,q.

Since Γ(V ) ⊆ aut(M,V), we have Γ(∧•,•V) ⊆ V •,•.
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To extend [·, ·]V to the hole bigraded space V , we first show that (4.7) works for η ∈ V p,1 and
η′ ∈ Γ(∧p′,q′V).

Lemma 4.10. Fix η ∈ V p,1 and η′ ∈ Γ(∧p′,q′V). Then, there exists a unique [η, η′]V ∈ Γ(∧p+p′,q′V)
such that i[η,η′]V = [Lη, iη′ ].

Proof. The uniqueness part, and the fact that it suffices to consider local generators, follow from the
injectivity of the correspondence η 7→ iη. So, without lost of generality suppose that η = α ⊗ u and
η′ = β⊗B, where α, β ∈ Γb(∧•V ◦), u ∈ aut(M,V), and B ∈ Γ(∧qV ). By repeating the computations
of the first part of the proof of Lemma 4.9, we get

[Lη, iη′ ] = [mα ◦ Lu,mβ ◦ iB] + (−1)p[mdα ◦ iu,mβ ◦ iB]

= mα ◦mβ ◦ [Lu, iB] +mα ◦ [Lu,mβ] ◦ iB +(−1)pmdα ◦ [iu,mβ] ◦ iB

= mα∧β ◦ i[u,B] +mα∧Lu β ◦ iB +(−1)pmdα∧iu β ◦ iB .

Hence, [Lη, iη′ ] is the insertion of (α ∧ Lu β) ⊗ B + (α ∧ β) ⊗ [u,B] + (−1)p(dα ∧ iu β) ⊗ B, which is
an element of Γ(∧p+p′,qV), due to the V-projectability of u. This means that one can set

[η, η′]V := (α ∧ β)⊗ [u,B] + (α ∧ Lu β)⊗B + (−1)p(dα ∧ iu β)⊗B,

and extend to any pair of elements by R-bilinearity. �

Remark 4.11. If η ∈ Γ(∧p,qV) and η′ ∈ V p′,1, then Lemma 4.10 implies that there exists a unique
[η, η′]V ∈ Γ(∧p+p′,qV) such that i[η,η′]V = [iη,Lη′ ]. By defining [η, η′]V in this manner, we obtain that
the skew-symmetry of the graded commutator induces the graded skew-symmetry on [·, ·]V .

As a consequence of Lemmas 4.9 and 4.10, if η ∈ V p,q and η′ ∈ Γ(∧p′,q′V), we can define [η, η′]V ∈
Γ(∧p+p′,q+q′−1V) by the relation

i[η,η′]V := [Lη, iη′ ] (4.8)

Now, observe from the graded Jacobi identity that L[η,η′]V = [i[η,η′]V ,d] = [[Lη, iη′ ],d] = [Lη,Lη′ ].
Therefore, if we use

L[η,η′]V := [Lη,Lη′ ] (4.9)

as a definition of [η, η′]V , provided the injectivity of the Lie operator correspondence η 7→ Lη, we
obtain the same bracket as in Lemmas 4.9 and 4.10. In particular, we can use (4.9) to extend [η, η′]V
to the case when η, η′ ∈ V •,1, even if non of them lies in Γ(∧•,•V).

Lemma 4.12. If η ∈ V p,1 and η′ ∈ V p′,1, then there exists a unique [η, η′]V ∈ V p+p′,1 such that (4.9)
holds, and coincides with the Frölicher-Nijenhuis bracket: [η, η′]FN = [η, η′]V .

Proof. Since η and η′ are vector-valued forms, it is well known that there exists a unique [η, η′]V such
that (4.9) holds, namely, their Frölicher-Nijenhuis bracket [35, Section 2.8]: [η, η′]V = [η, η′]FN . It is
left to show that, in fact, [η, η′]FN ∈ V p+p′,1. Pick u1, . . . , up+p′ ∈ aut(M,V). Since η ∈ V p,1 and
η′ ∈ V p′,1, it follows that each of

[η(u1, . . . , up), η
′(up+1, . . . , up+p′)], η′([η(u1, . . . , up), up+1], up+2, . . . , up+p′),

η([η′(u1, . . . , up′), up′+1], up′+2, . . . , up+p′), η′(η([u1, u2], u3, . . . , up), up+1, . . . , up+p′),

η(η′([u1, u2], u3, . . . , up′), up′+1, . . . , up+p′)
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is a projectable vector field. By [35, Theorem 8.9], [η, η′]FN (u1, . . . , up+p′) equals to a sum of some
terms of the form given in above. Hence, [η, η′]FN (u1, . . . , up+p′) ∈ aut(M,V). If, in addition, any
of the arguments is leaf-tangent, say, u1 ∈ Γ(V ), then each of the above terms vanish due to the
projectability of each involved vector field and the fact that η ∈ Γ(∧pV ◦ ⊗ TM) and η′ ∈ Γ(∧p′V ◦ ⊗
TM). Therefore, [η, η′]FN ∈ V , as desired. �

The Lie algebra (V , [·, ·]V ). Up to this point, we have defined a bracket [·, ·]V on V . In order to
show that (V , [·, ·]V ) is indeed a graded Lie algebra, we require the following property:

[iξ, iξ′ ] = 0, ∀ξ ∈ Γ(∧p,qV), ξ′ ∈ Γ(∧p′,q′V). (4.10)

To see this, take ξ = α⊗A, and β ⊗B, with α, β ∈ Γ(∧•V ◦), and A,B ∈ Γ(∧•V ). Then iξ = mα ◦ iA
and iξ′ = mβ ◦ iB. Since mα, iA,mβ, iB commute with each other, it follows that [iξ, iξ′ ] = 0.

Theorem 4.13. On the bigraded R-space V •,•, the following relations give a well-defined Lie bracket
[·, ·]V of bidegree (0,−1) such that Γ(∧•,•V) is an ideal:

i[η,η′]V := [Lη, iη′ ] if η′ lies in Γ(∧•,•V),

L[η,η′]V := [Lη,Lη′ ] if η, η′ ∈ V •,1.

Proof. Recall that (4.8) implies (4.9), so there is no ambiguity on the definition of [·, ·]V . Moreover, the
graded skew-symmetry holds due to Remark 4.11 and the skew-symmetry of the Frölicher-Nijenhuis
bracket. We now verify the Jacobi identity on η ∈ V p,q, η′ ∈ V p′,q′ , and η′′ ∈ V p′′,q′′ . Since formula
(4.8) applies whenever any of the arguments lies in Γ(∧•,•V), the Jacobi identity follows from the one
of the Vinogradov bracket in this case. This means that the only nontrivial case in which the graded
Jacobi identity must be verified is when η ∈ V p,1, η′ ∈ V p′,1, and η′′ ∈ V p′′,q′′ . Furthermore, if q′′ ≥ 1,
then the Lie operator correspondence η 7→ Lη is injective, and we can apply the relation (4.9) and
the Jacobi identity follows from the one of the graded commutator. So, it is left to consider the case
η′′ ∈ V p′′,0.

i[[η,η′]V ,η′′]V = [L[η,η′]V , iη′′ ] = [[Lη,Lη′ ], iη′′ ] = [Lη, [Lη′ , iη′′ ]] + (−1)p
′′p′ [[Lη, iη′′ ],Lη′ ]

= [Lη, i[η′,η′′]V ] + (−1)p
′′p′ [i[η,η′′]V ,Lη′ ] = i[η,[η′,η′′]V ]V +(−1)(p′′−1)p′ i[[η,η′′]V ,η′]V ,

where in the last step we have taken into account Remark 4.11. This proves that the graded Jacobi
identity always holds, so (V , [·, ·]V ) is indeed a Lie algebra of degree −1. Furthermore, the fact that
Γ(∧•,•V) is an ideal simply follows from Lemma 4.10. �

Since Γ(∧•,•V) is an ideal of (V , [·, ·]V ), the adjoint operator of every η ∈ V , adη := [η, · ]V , is a
derivation of (Γ(∧•,•V),∧, [·, ·]V). Indeed, the derivation property of the bracket simply follows from
the graded Jacobi identity of [·, ·]V . In the case of the exterior product, for η ∈ V p,q, η′ ∈ Γ(∧p′,q′V),
and η′′ ∈ Γ(∧p′′,q′′V) we get

iadη(η′∧η′′) = [Lη, iη′∧η′′ ] = [Lη, iη′ ◦ iη′′ ] = [Lη, iη′ ] ◦ iη′′ +(−1)(p−q+1)(p′−q′) iη′ ◦[Lη, iη′′ ]

= i[η,η′]V ◦ iη′′ +(−1)(p+q−1)(p′+q′) iη′ ◦[Lη, iη′′ ]

= iadη(η′)∧η′′ +(−1)| adη ||η′| iη′∧adη(η′′),

which implies adη(η
′ ∧ η′′) = adη(η

′) ∧ η′′ + (−1)| adη ||η′|η′ ∧ adη(η
′′).
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Proposition 4.14. The center of (V •,•, [·, ·]V ) lies in the space of closed forms in Γ(∧•V ◦). In
the case when the leaves of V are the fibers of a submersion M

π→ B, the only central elements of
(V •,•, [·, ·]V ) are the locally constant functions.

Proof. Let η ∈ V p,q be a central element. Then, for f ∈ C∞(M) = V 0,0, and u1, . . . , up ∈ aut(M,V),

0 = [η, f ](u1, . . . , up) = [η(u1, . . . , up), f ] = −(−1)q id f η(u1, . . . , up).

If q ≥ 1, then the above relation implies that η(u1, . . . , up) = 0, so η = 0. If q = 0, then η ∈ Γ(∧pV ◦)
is a differential form. For each Y ∈ Γ(V ) ⊂ V 0,1, one has

0 = [Y, η] = LY η = iY d η,

which means that η must be a basic form, η ∈ Γb(∧pV ◦). This property implies that η commutes with
every element in Γ(∧•,•V). On the other hand, if γ is a connection on (M,V), then Id−γ ∈ V 1,1, and

0 = [Id−γ, η] = γη = dγ1,0 η,

where we are using the decomposition of the de Rham differential d = dγ0,1 + dγ1,0 + dγ2,−1. Since
η ∈ Γ(∧pV ◦), one has dγ2,−1 η = 0 and, since η is basic, dγ0,1 η = 0. Therefore, d η = 0, proving that η
is a closed form. Furthermore, in the case when the foliation V is given by the fibers of a submersion,
then M is locally generated by global projectable vector fields. Thus, the fact that Lu η = [u, η] = 0
for all u ∈ aut(M,V) = V 0,1 implies that η must be a function η ∈ C∞(M) which is locally constant
by the closedness property. �

We now present an explicit formula for the computation of [η, η′]V in the particular case described
in Lemma 4.10.

Lemma 4.15. If η ∈ V p,1 and η′ ∈ Γ(∧p′,q′V), then for u1, . . . , up+p′ ∈ aut(M,V), we have

[η, η′]V (u1, . . . , up+p′) :=
∑

σ∈S(p,p′)

(−1)σ[η(uσ1 , . . . , uσp), η
′(uσp+1 , . . . , uσp+p′ )]

−
∑

σ∈S(p,1,p′−1)

(−1)ση′([η(uσ1 , . . . , uσp), uσp+1 ], uσp+2 , . . . , uσp+p′ ) (4.11)

− (−1)p
∑

σ∈S(2,p−1,p′−1)

(−1)ση′(η([uσ1 , uσ2 ], uσ3 , . . . , uσp+1), uσp+2 , . . . , uσp+p′ ).

Proof. Following the proof of Lemma 4.10, for η = α⊗ u, and η′ = β ⊗B, we have

[η, η′]V = (α ∧ β)⊗ [u,B] + (α ∧ Lu β)⊗B + (−1)p(dα ∧ iu β)⊗B.

Let us show that this coincides with (4.11). By straightforward computations,

[η(uσ1 , . . . , uσp), η
′(uσp+1 , . . . , uσp+p′ )] =α(uσ1 , . . . , uσp)β(uσp+1 , . . . , uσp+p′ )[u,B]

+ α(uσ1 , . . . , uσp) Lu(β(uσp+1 , . . . , uσp+p′ ))B

− β(uσp+1 , . . . , uσp+p′ )u ∧ id(α(uσ1 ,...,uσp ))B,
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where the last term vanishes due to the fact that α ∈ Γb(∧pV ◦) and B ∈ Γ(∧qV ). Also,

η′([η(uσ1 , . . . , uσp), uσp+1 ], uσp+2 , . . . , uσp+p′ ) = α(uσ1 , . . . , uσp)β([u, uσp+1 ], uσp+2 , . . . , uσp+p′ )B

− Luσp+1
(α(uσ1 , . . . , uσp))β(u, uσp+2 , . . . , uσp+p′ )B,

η′(η([uσ1 , uσ2 ], uσ3 , . . . , uσp+1), uσp+2 , . . . , uσp+p′ ) =α([uσ1 , uσ2 ], uσ3 , . . . , uσp+1)β(u, uσp+2 , . . . , uσp+p′ )B.

It is straightforward to check that the evaluation of (α∧β)⊗[u,B]+(α∧Lu β)⊗B+(−1)p(dα∧iu β)⊗B
on (u1, . . . , up+p′) gives the corresponding signed sums of the above terms. �

Covariant exterior derivatives. An special class of elements in V 1,1 are given as follows. Consider
a connection γ on (M,V), that is, a vector valued 1-form γ ∈ Γ(T ∗M⊗TM) which, viewed as a vector
bundle map γ : TM → TM , has the following properties: im(γ) = V , and γ2 = γ. We claim that
(Id−γ) ∈ V 1,1. Indeed, since γ(Y ) = Y for all Y ∈ Γ(V ), it follows that (Id−γ)(Y ) = 0. Furthermore,
since Γ(V ) ⊂ aut(M,V), we have for all u ∈ aut(M,V) that (Id−γ)(u) = u−γ(u) ∈ aut(M,V), proving
the claim.

For a connection γ on (M,V), and denote the adjoint operator of (Id−γ) by γ := adId−γ . For
η ∈ Γ(∧p,qV), and u1, . . . , up+1 ∈ aut(M,V), we get from (4.11) that

γη(u1, . . . , up+1)=
∑

σ∈S(1,p)

(−1)σ[(Id−γ)(uσ1),η(uσ2 , . . . , uσp+1)] (4.12)

−
∑

σ∈S(1,1,p−1)

(−1)ση([(Id−γ)(uσ1), uσ2 ], uσ3 , . . . , uσp+1)

+
∑

σ∈S(2,p−1)

(−1)ση((Id−γ)([uσ1 , uσ2 ]), uσ3 , . . . , uσp+1)

=
∑

σ∈S(1,p)

(−1)σ[(Id−γ)(uσ1),η(uσ2 , . . . , uσp+1)]−
∑

σ∈S(2,p−1)

(−1)ση([uσ1 , uσ2 ], uσ3 , . . . , uσp+1).

This formula is the so-called covariant exterior derivative of the connection γ [77, Subsection 2.2], [15,
Section 4], [50, Subsection 4.2.2], [71, Section 2]. On the other hand, recall that the curvature of γ is the
vector-valued 2-form Rγ ∈ Γ(∧2,1V), given on X,Y ∈ Γ(TM) by Rγ(X,Y ) = γ[(Id−γ)X, (Id−γ)Y ].
Since Rγ = 1

2 [Id−γ, Id−γ]FN , we get that the square of the covariant exterior derivative is just the
adjoint operator of the curvature,

( γ)2 = 1
2 [ γ , γ ] = 1

2 [adId−γ , adId−γ ] = 1
2 ad[Id−γ,Id−γ]FN = adRγ .

Explicitly,

( γ)2η(u1, . . . , up+2) =
∑

σ∈S(2,p)

(−1)σ[Rγ(uσ1 , uσ2), η(uσ3 , . . . , uσp+2)].

Eqiuvalence equations revisted. Let us consider a vertical bivector field P ∈ Γ(∧2V ). Associated
with P , there exists an operation between horizontal forms Q ∈ Γ(V ◦), θ ∈ Γ(∧pV ◦), given by [78,
Eq. (2.57)]

{Q ∧ θ}P (u0, . . . , up) :=

p∑
i=0

(−1)i{Q(ui), θ(u0, . . . , ûi, . . . , up)}P , u0, . . . , up ∈ aut(M,V).
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where the bracket on the right-hand sums is {f, g}P := P (d f, d g). It is straightforward to verify that

{Q ∧ θ}P = [[P,Q], θ].

This bracket appears in the equations arising in Theorem 2.30, which can be rewritten as

γ − g∗γ̃ = −[P,Q], σ − g∗σ̃ = [(Id−γ) + 1
2 [P,Q], Q].

These equations arise in the context of equivalence of Poisson structures over symplectic leaves [78].

4.3 Coupling twisted Dirac structures and its cohomology

4.3.1 Geometric data and coupling structures with background

Following Section 2.3, we introduce, for the case of twisted structures, some notions associated
with Poisson foliations with background. As we will see, these notions are closely related with the
description of coupling Dirac structures with background via geometric data.

Definition 4.16. Let ψ ∈ Γ(∧3T ∗M) be a closed 3-form. A ψ-Poisson foliation is a triple (M,V, P )
consisting of a regular foliation V and a leaf-tangent bivector field P ∈ Γ(∧2V ) which is ψ-Poisson,

1
2 [P, P ] = −P ]ψ.

Additionally, a connection γ ∈ Γ(T ∗M ⊗ V ) is said to be ψ-Poisson on (M,V, P ) if

[X,P ] = P ] iX ψ, ∀X ∈ Γ(Hγ) ∩ aut(M,V).

We remark from Section 1.4 that the condition on a connection γ to be ψ-Poisson on (M,V, P ) is
just that the γ-horizontal V-projectable vector fields are cocycles of the complex associated with the
ψ-Poisson structure P , (Γ(∧•TM), P,ψ),

Γ(Hγ) ∩ aut(M,V) ⊆ Z1
P,ψ(M).

Equivalently, the ψ-Poisson connection condition is equivalent

[X,P ](µ, ν) = P ] iX ψ(µ, ν), ∀X ∈ Γ(Hγ), and µ, ν ∈ Γ(Aγ).

Finally, we recall that the curvature Rγ ∈ Γ(∧2TM ⊗ V ) of γ is defined by

Rγ(X,Y ) = γ[(Id−γ)X, (Id−γ)Y ], ∀X,Y ∈ TM.

Now, we describe the geometric data associated with V-coupling Dirac structures with background.

Definition 4.17. Let ψ ∈ Γ(∧3T ∗M) be a closed 3-form. A triple of geometric data (P, γ, σ) on
(M,V ) are said to be ψ-Dirac elements on (M,V) if the following relations hold for all X,Y, Z ∈ Γ(Hγ)
and µ, ν ∈ Γ(Aγ):

1
2 [P, P ] = −P ]ψ, (4.13)

[X,P ](µ, ν) = P ] iX ψ(µ, ν), (4.14)

Rγ(X,Y ) = −P ] iY iX(dσ + ψ), (4.15)

(dσ + ψ)(X,Y, Z) = 0. (4.16)
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Condition (4.13) says that the triple (M,V, P ) is a ψ-Poisson foliation, and the property (4.14) is
equivalent to the fact that the connection γ is ψ-Poisson on (M,V, P ). Also, condition (4.15) means
that the curvature of γ is locally Hamiltonian, via the closed form dσ + ψ.

The goal of this Section is to show that Dirac elements are precisely the geometric data associated
with a Dirac structure with background. To do so, fix a maximally isotropic subbundle D ⊂ TM .
Let (P, γ, σ) be its associated geometric data, in the sense of Propositions 2.23 and 2.4. Then, D =
DP
Aγ ⊕Dσ

Hγ , where

DP
Aγ := Graph(P ]|Aγ ) = {P ]µ⊕ µ | µ ∈ Aγ},

Dσ
Hγ := Graph(−σ[|Hγ ) = {X ⊕ (− iX σ) | X ∈ Hγ}.

Now, fix a closed 3-form ψ ∈ Γ(∧3T ∗M). We now proceed to find necessary and sufficient conditions
for the closedness of Γ(D) under the ψ-Dorfman bracket (1.9) in terms of the splitting D = DP

Aγ⊕Dσ
Hγ .

Lemma 4.18. Property JΓ(DP
Aγ ),Γ(DP

Aγ )Kψ ⊆ Γ(D) is equivalent to (4.13) and (4.14).

Proof. Given µ, ν ∈ Γ(Aγ), we have

JP ]µ⊕ µ, P ]ν ⊕ νKψ = [P ]µ, P ]ν]⊕ {µ, ν}P,ψ,

where {·, ·}P,ψ is defined as in (1.11). Since, P ∈ Γ(∧2V ), and V is involutive by hypothesis, it follows
that [P ]µ, P ]ν] ∈ Γ(V ). Therefore, JP ]µ⊕µ, P ]ν⊕ νKψ ∈ Γ(D) if and only if [P ]µ, P ]ν]⊕{µ, ν}P,ψ ∈
Γ(DP

Aγ ), which, by definition of DP
Aγ , is equivalent to

[P ]µ, P ]ν] = P ]{µ, ν}P,ψ and {µ, ν}P,ψ ∈ Γ(Aγ).

The first equality holds for all µ, ν ∈ Γ(Aγ) if and only if P is a ψ-Poisson structure (in fact, since
P ∈ Γ(∧2V ), both sides vanish whenever µ ∈ Γ(V ◦) or ν ∈ Γ(V ◦)). The second identity is just
{µ, ν}P,ψ(X) = 0 for all X ∈ Hγ , which, by Lemma B.2, is equivalent to (4.14). �

Lemma 4.19. Property JΓ(Dσ
Hγ ),Γ(Dσ

Hγ )Kψ ⊆ Γ(D) is equivalent to (4.15) and (4.16).

Proof. Given X,Y ∈ Γ(Hγ), we have X ⊕ (− iX σ), Y ⊕ (− iY σ) ∈ Γ(Dσ
Hγ ). Then,

JX ⊕ (− iX σ), Y ⊕ (− iY σ)Kψ = [X,Y ]⊕ (LX(− iY σ)− iY d(− iX σ)− iY iX ψ)

= [X,Y ]⊕ (− i[X,Y ] σ − iY iX(dσ + ψ))

= (IdTM −γ)[X,Y ]⊕ (− i(IdTM −γ)[X,Y ] σ)

+Rγ(X,Y )⊕ (− iY iX(dσ + ψ)).

Observe that (IdTM −γ)[X,Y ]⊕ (− i(IdTM −γ)[X,Y ] σ) ∈ Γ(Dσ
Hγ ) ⊂ Γ(D). Therefore,

JX ⊕ (− iX σ), Y ⊕ (− iY σ)Kψ ∈ Γ(D)

if and only if

Rγ(X,Y )⊕ (− iY iX(dσ + ψ)) ∈ Γ(DP
Aγ ).

This is equivalent to

Rγ(X,Y ) = −P ] iY iX(dσ + ψ), and iY iX(dσ + ψ)(Z) = 0 ∀Z ∈ Γ(Hγ).

�
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Lemma 4.20. Property JΓ(Dσ
Hγ ),Γ(DP

Aγ )Kψ ⊆ Γ(D) is equivalent to (4.14) and (4.15).

Proof. Take X ∈ Γ(Hγ) and µ ∈ Γ(Aγ). By straightforward computations and Lemma B.4, we obtain

JX ⊕ (− iX σ), P ]µ⊕ µKψ =(iµ[X,P ]− iµ P
] iX ψ)⊕ (iP ]µ iX dσ + iP ]µ d iX σ)+

+ iµ P
] iX ψ ⊕ (−ν) + P ] LX µ⊕ (LX µ+ iiX Rγ µ)+

+ 0⊕ (− iP ]µ iX dσ − α− iiX Rγ µ).

Here, α ∈ Γ(V ◦) and ν ∈ Γ(Aγ) are such that α+ ν = iP ]µ iX ψ. Observe that

iµ P
] iX ψ ⊕ (−ν) ∈ Γ(DP

Aγ ),

P ] LX µ⊕ (LX µ+ iiX Rγ µ) ∈ Γ(DP
Aγ ),

iP ]µ iX dσ + iP ]µ d iX σ = −σ[(iµ[X,P ]− iµ P
] iX ψ).

Indeed, just observe that P ](−ν) = −P ] iP ]µ iX ψ = iµ P
] iX ψ, due to the definition of the map

P ] : ∧2T ∗M → ∧2TM . The second claim follows from the properties of the curvature Rγ . The proof
of the third claim is,

−σ[(iµ[X,P ]− iµ P
] iX ψ) = −σ[ iµ[X,P ] = σ[(P ] LX µ− [X,P ]µ]) = −σ[[X,P ]µ] = iP ]µ LX σ,

where in the second equality we have applied Lemma B.4. Therefore, JΓ(Dσ
Hγ ),Γ(DP

Aγ )Kψ ⊆ Γ(D) if
and only if, for all X ∈ Γ(Hγ) and µ ∈ Γ(Aγ), we have

(iµ[X,P ]− iµ P
] iX ψ)⊕ (iP ]µ iX dσ + iP ]µ d iX σ) ∈ Γ(Dσ

Hγ ),

− iP ]µ iX dσ − α− iiX Rγ µ = 0.

The first assertion is equivalent to (4.14). The second one is equivalent to (4.15). �

These lemmas can be summarized in the following result:

Theorem 4.21. Let ψ ∈ Γ(∧3T ∗M) be a closed 3-form, and let D ⊂ TM be a V -coupling Lagrangian
subbundle with associated geometric data (P, γ, σ). Then, D is a ψ-Dirac structure on M if and only
if (P, γ, σ) are ψ-Dirac elements.

We remark that the correspondence between V -coupling ψ-Dirac structures and ψ-Dirac elements
is one to one. In the case ψ = 0, we recover Theorem 2.24.

4.3.2 The bigraded cochain complex

Let (M,V) be a foliated manifold, and fix a closed 3-form ψ ∈ Γ(∧3T ∗M). Let us denote by V := TV
the tangent bundle of V and by V ◦ := Ann(V ) its annihilator.

Let (P, γ, σ) be ψ-Dirac elements, and let D be its correspondent ψ-Dirac structure,

D = Graph(−σ[|Hγ )⊕Graph(P ]|Aγ )

Let us denote H := Hγ ⊕Aγ . Observe that the map φ : H→ D, given by

φ(X ⊕ µ) := (X + P ]µ)⊕ (− iX σ + µ)
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is an isomorphism. On the other hand, recall that D has a Lie algebroid structure, where the anchor
pD : D → TM is the restriction of the canonical projection TM → TM , and the bracket [·, ·]D is the
restriction of the ψ-Dorfman bracket

JX ⊕ α, Y ⊕ βKψ := [X,Y ]⊕ (LX β − iY dα− iY iX ψ), ∀ X ⊕ α, Y ⊕ β ∈ Γ(TM).

Since φ : H → D is a vector bundle isomorphism, we can pull back the Lie algebroid structure of D
to H.

Lemma 4.22. Consider the vector bundle map q : H→ TM given by q(X ⊕ µ) := X + P ]µ, and the
bracket [·, ·]H : Γ(H)× Γ(H)→ Γ(H) given on X,X ′ ∈ Γ(Hγ) and µ, ν ∈ Γ(Aγ) by the relations

[X,X ′]H := (IdTM −γ)[X,X ′]⊕ (− iX′ iX(dσ + ψ)),

[X, ν]H := (IdTM −γ)[X,P ]ν]⊕ (LX ν − iP ]ν iX(dσ + ψ)),

[µ, ν]H := 0⊕ {µ, ν}P,ψ.

The isomorphism φ : H → D satisfies q = φ ◦ pD, and φ[ξ, η]H = [φ(ξ), φ(η)]D for all ξ, η ∈ H. In
particular, (H, q, [·, ·]H) is a Lie algebroid isomorphic to D.

Proof. The fact that the bracket [·, ·]H is well defined follows from Lemmas 4.18-4.20. Now, note that

(pD ◦ φ)(X ⊕ µ) = pD(X + P ]µ)⊕ (− iX σ + µ) = X + P ]µ = q(X ⊕ µ).

On the other hand, by applying (4.15) and the computations of Lemma 4.19, we get

φ[X,X ′]H = φ((IdTM −γ)[X,X ′]⊕ (− iX′ iX(dσ + ψ)))

= ((IdTM −γ)[X,X ′] + P ](− iX′ iX(dσ + ψ)))⊕ (− i(IdTM −γ)[X,X′] σ − iX′ iX(dσ + ψ))

= ((IdTM −γ)[X,X ′] +Rγ(X,X ′))⊕ (− i(IdTM −γ)[X,X′] σ − iX′ iX(dσ + ψ))

= JX ⊕ (− iX σ), X ′ ⊕ (− iX′ σ)Kψ
= [φ(X), φ(X ′)]D.

Similarly, since P is ψ-Poisson,

φ[µ, ν]H = φ(0⊕ {µ, ν}P,ψ) = P ]{µ, ν}P,ψ ⊕ {µ, ν}P,ψ
= [P ]µ, P ]ν]⊕ {µ, ν}P,ψ = JP ]µ⊕ µ, P ]ν ⊕ νKψ
= [φ(µ), φ(ν)]D.

Finally, the fact that φ[X, ν]H = [φ(X), φ(ν)]D follows from (4.15), (4.16) and arguments similar to
the proof of Lemma 4.20. �

Due to the previous lemma, the cochain complex (Γ(∧•D∗), D) of the Lie algebroid (D, pD, [·, ·]D)
of the Dirac structure D is isomorphic to the one of (H, q, [·, ·]H). On the other hand, observe that
the dual space H∗ is isomorphic to V = V ◦ ⊕ V via the canonical pairing. In fact, one can think of
α⊕ v ∈ V as an element Φα⊕v ∈ H∗ by setting

Φα⊕v(X ⊕ µ) = α(X) + µ(v).
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This map can be extended to an isomorphism Φ : Γ(∧•V)→ Γ(∧•H∗), which induce a cochain complex
structure on Γ(∧•V).

Let us describe the coboundary operator on Γ(∧•V), in terms of the geometric data (P, γ, σ) and
the background 3-form ψ. To do so, we need to consider the derivations of Γ(∧•,•V) described in
Subsections 4.2.2, and 4.2.3, namely, the derivations induced by 3-forms, and the adjoint operators
with respect to the bracket of (V , [·, ·]).

For the rest of this section, let us fix f ∈ C∞(M), α ∈ Γ(V ◦), Y ∈ Γ(V ), µ, ν ∈ Γ(T ∗M), and

u, v ∈ aut(M,V). Associated with P and ψ, consider the operator 0,1 := P +j
(0,1)
P,ψ , where P := adP

is the adjoint of P ∈ Γ(∧2,0V), and j
(0,1)
P,ψ is defined in terms of (1.13) by (4.5).

0,1f = −P ] d f,

0,1α(u) = P ] d(α(u)), (4.17)

0,1Y (µ, ν) = LP ]µ(ν(Y ))− LP ]ν(µ(Y ))− {µ, ν}P,ψ(Y ). (4.18)

The operator 1,0 := γ + j
(1,0)
P,ψ is the sum of the covariant derivative of γ, γ := ad(Id−γ) defined by

(4.12), and the operator j
(0,1)
P,ψ is defined as in Section 4.2.2. Then,

1,0f(u) = L(Id−γ)(u) f,

1,0α(u, v) = L(Id−γ)(u)(α(v))− L(Id−γ)(v)(α(u))− α[u, v], (4.19)

1,0Y (u, µ) = [(Id−γ)(u), Y ] + iY iP ]µ iu ψ. (4.20)

Now, let ψ = ψγ3,0 +ψγ2,1 +ψγ1,2 +ψγ0,3 be the bigraded decomposition of ψ with respect to γ. Then, the

3-form ψγ2,1 is a section of ∧2V ◦⊗T ∗M . As described in Section 4.2.2, there is an algebraic derivation

induced by ψγ2,1, namely, j
(2,−1)

ψγ2,1
defined by (4.6). Since this derivation depends on the choice of ψ and

γ, let us denote it by j
(2,−1)
ψ,γ .

Finally, the operator of bidegree (2,−1) is 2,−1 := σ + j
(2,−1)
γ,ψ , which is the sum of the negative

adjoint operator σ := − adσ with the algebraic derivation j
(2,−1)
γ,ψ . Then,

2,−1f = 0, 2,−1α = 0, 2,−1Y = LY σ − iY ψ
γ
2,1 (4.21)

Proposition 4.23. The de Rham complex of the Lie algebroid H isomorphic to (Γ(∧•V), ), where
= 0,1 + 1,0 + 2,−1 are the bigraded operators defined above.

Proof. We need to show that Φ ◦ = H ◦ Φ, where H is the de Rham differential of H. Recall that
the adjoint operators are derivations of the exterior algebra Γ(∧•V). Therefore, it suffices to show
that Φ◦ = H ◦Φ holds on Γ(V). Pick α ∈ Γ(V ◦), and v ∈ Γ(V ). Then, for u, v ∈ Γ(Hγ)∩aut(M,V)
and µ, ν ∈ Γ(Aγ), we get

(Φ ◦ )α(u, v) = Φ( α)(u, v) = Φ( 1,0α)(u, v) = Lu(α(v))− Lv(α(u))− α[u, v]

= Lq(u)(Φα(v))− Lq(v)(Φα(u))− Φα[u, v]H = HΦα(u, v)

= ( H ◦ Φ)α(u, v).
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Here, we have applied (4.19). Now, by (4.17), we get

(Φ ◦ )α(u, ν) = Φ( α)(u, ν) = Φ( 0,1α)(u, ν) = ν(P ] d(α(u))) = −d(α(u))(P ]ν)

= −LP ]ν(α(u)) = 0− LP ]ν(α(u))− 0

= Lq(u)(Φα(ν))− Lq(ν)(Φα(u))− Φα[u, ν]H = HΦα(u, ν)

= ( H ◦ Φ)α(u, ν).

Moreover,

(Φ ◦ )α(µ, ν) = Φ( α)(µ, ν) = Φ( −1,2α)(µ, ν) = 0 = LP ]µ(0)− LP ]ν(0)− 0

= Lq(µ)(Φα(ν))− Lq(ν)(Φα(µ))− Φα[µ, ν]H = HΦα(µ, ν)

= ( H ◦ Φ)α(µ, ν).

On the other hand, by (4.21),

(Φ ◦ )Y (u, v) = Φ( Y )(u, v) = Φ( 2,−1Y )(u, v) = LY σ(u, v)− iY ψ
γ
2,1(u, v)

= Lu(0)− Lv(0)− Y (− iv iu(dσ + ψ))

= Lq(u)(ΦY (v))− Lq(v)(ΦY (u))− ΦY [u, v]H = HΦY (u, v)

= ( H ◦ Φ)Y (u, v).

By applying (4.20)

(Φ ◦ )Y (u, ν) = Φ( Y )(u, ν) = Φ( 1,0Y )(u, ν) = [(Id−γ)(u), Y ] + iY iP ]ν iu ψ

= Lu(ν(Y ))− Lu ν(Y ) + iP ]ν iu ψ(Y )

= Lu(ν(Y ))− LP ]ν(0)− (Lu ν − iP ]ν iu(dσ + ψ))(Y )

= Lq(u)(ΦY (ν))− Lq(ν)(ΦY (u))− ΦY [u, ν]H = HΦY (u, ν)

= ( H ◦ Φ)Y (u, ν).

Finally, by (4.18),

(Φ ◦ )Y (µ, ν) = Φ( Y )(µ, ν) = 1,0Y (µ, ν) = LP ]µ(ν(Y ))− LP ]ν(µ(Y ))− {µ, ν}P,ψ(Y )

= Lq(µ)(ΦY (ν))− Lq(ν)(ΦY (µ))− ΦY [µ, ν]H = HΦY (µ, ν)

= ( H ◦ Φ)Y (µ, ν),

�

Summarizing the above results, we arrive at the main result.

Theorem 4.24. Let ψ ∈ Γ(∧3T ∗M) be a closed 3-form, and V be a regular foliation on M . Denote
V := V ⊕ V ◦, with V := TV and V ◦ := Ann(V ). Let also D ⊂ TM be a V-coupling Dirac ψ-structure

with associated ψ-Dirac elements (P, γ, σ). On Γ(∧•V), consider the coboundary operator ≡ ψ
P,γ,σ

with bigraded components 0,1, 1,0, and 2,−1 given by

2,−1 := P + j
(0,1)
P,ψ , 2,−1 := γ + j

(1,0)
P,ψ , 2,−1 := σ + j

(2,−1)
γ,ψ .

Then, the de Rham complex (Γ(∧•D∗), D) of the Lie algebroid of D is isomorphic to the bigraded
cochain complex (Γ(∧•V), ).
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Proof. Because of Proposition 4.23, the pair (Γ(∧•V), ) is a cochain complex isomorphic to the de
Rham complex of the Lie algebroid H. On the other hand, φ : H → D is an isomorphism of Lie
algebroids, which implies that their corresponding cochain complexes are isomorphic. �

As a consequence of Theorem 4.24, we have the following results [15, Prop. 5.3], [50, Prop. 4.2.11].

Corollary 4.25. Let S be an embedded symplectic leaf of a Poisson manifold (M,Π), and let N
be a coupling neighborhood of S. Let (P, γ, σ) be the associated geometric data of Π|N . Then, the
Lichnerowicz-Poisson complex (Γ(∧•TN, Π) of Π in N is isomorphic to the bigraded cochain complex
(Γ(∧•V), P,γ,σ = P + γ+ σ), where P := adP , γ := adId−γ, σ := ad−σ are the adjoint operators
with respect to the bracket in Theorem 4.13.
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Introduction to Part III

This part is devoted to the study of infinitesimal automorphisms of Poisson manifolds carrying a
singular symplectic foliation, with applications to the description of the first Poisson cohomology and
the modular class in the semilocal context, around possibly singular symplectic leaves.

Given a Poisson manifold (M,Ψ), the first Poisson cohomology H1
Ψ(M) is the quotient of the

Lie algebra Poiss(M,Ψ) of Poisson vector fields by its ideal Ham(M,Ψ) of Hamiltonian vector fields
(see Section 1.4). The Hamiltonian vector fields generate the distribution Ψ](T ∗M) ⊆ TM , which
integrates to a possibly singular symplectic foliation (S, ω).

In the regular case, when rank Ψ is locally constant on M , the choice of a subbundle ν(S) ⊂ TM
normal to S, TM = TS ⊕ ν(S), induces the following short exact sequence which describes the first
Poisson cohomology [62, Section 2], [74]:

0→ H1
dR(S)

Ψ]

↪→ H1
Ψ(M)

prν(S)−→ ker(ρ)→ 0.

Here, the first term is the tangential component, which is independent of ω, and just coincides with
the first foliated de Rham cohomology of S. The second term is the transversal component, consisting
of the ν(S)-valued infinitesimal automorphisms of the symplectic foliation Y ∈ ΓS-pr(ν(S)) which
correspond to the cohomologically trivial in H2

dR(S) transversal variations LY ω of ω. In other words,
ρ : ΓS-pr(ν(S)) → H2

dR(S) is given by ρ(Y ) := [LY ω]. The above short exact sequence allows to
compute the first Poisson cohomology in some particular cases [25, 34, 64, 62, 74, 84].

One of our purposes is to generalize this result in the singular case. To this end, recall from
Section 2.5 that each embedded symplectic leaf S admits a tubular neighborhood N ⊂ M in which
the Poisson structure Ψ is coupling. Then, the Poisson structure splits into “regular” and “singular”
parts, Ψ = ΨH + ΨV , where ΨV is the transverse Poisson structure of S. Furthermore, as we show in
Theorem 5.12, the following holds:

0→ H1(N0, )
Ψ]

↪→ H1
Ψ(N)

prV−→ ker(ρ:A−→H2(N0, ))
Ham(N,ΨV ) → 0.

The first term, which is the tangential component, is the first cohomology of the de Rham - Casimir
complex (N •0 , ), consisting of the differential forms on S with values in Casimir functions of ΨV . The

coboundary operator is defined by the covariant exterior derivative associated with Ψ]
H(T ∗N). The

second “transversal” term involves the kernel of an intrinsic morphism ρ from a Lie subalgebra A of
Poiss(N,ΨV ) to the second cohomology group H2(N0, ).

We present a geometric derivation of this result in the context of the description of infinitesimal
automorphisms of coupling Poisson structures [65, 77, 78]. Algebraically, this is Theorem 3.11 applied
to the bigraded cochain complex in Corollary 4.25. In the case when the symplectic leaf S is regular,
this result coincides with the short exact sequence of the regular case.

We also apply our result to two particular cases related with singular symplectic foliations. Firstly,
in Theorems 5.15 and 5.19, we formulate some sufficient criteria for the triviality of the first Poisson
cohomology of coupling Poisson structures. The key point is to regard (N •, ) as a subcomplex of
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some foliated de Rham complex. Under some geometric conditions, the natural morphism between its
cohomologies in degree 1 is injective, so the triviality of the first foliated de Rham cohomology implies
the triviality of the tangential term. These criterion realize under some “flatness condition” for the
symplectic leaf. Combining this with the results of Conn [12], we derive Theorem 5.22.

Secondly, the above result is also applied to the case when the Casimir functions of the transversal
Poisson structure ΨV are projectable (foliated) with respect to the vertical foliation of the tubular
neighborhood. Using the fact that the de Rham - Casimir complex is isomorphic to the de Rham
complex of the symplectic leaf S, we illustrate the computation of H1

Ψ(N) by some examples.
We remark that the results presented in this context can be generalized to the Dirac case in order

to describe the first Lie algebroid cohomology of Dirac structures around presymplectic leaves [50, 67].
We also apply our results to the description of the semilocal properties of the modular class.
The modular class Mod(M,Π) of an orientable Poisson manifold (M,Π) is a distinguished element

of the first Poisson cohomology group H1
Π(M) and gives an obstruction to the existence of a volume

form which is invariant under the flow of every Hamiltonian vector field [41, 83]. If the modular class
is trivial, then such an invariant volume form exists and the Poisson manifold is said to be unimodular.

In the regular case, when the rank of the Poisson tensor Π is locally constant, we have the following
fact [1]: the modular class Mod(M,Π) is equivalent to the Reeb class Mod(S) of the regular symplectic
foliation S of Π (for the case codimS = 1, see [30]). For a transversally orientable regular foliation,
the Reeb class is the obstruction to the existence of a closed transversal volume element [31]. This
relationship leads to a geometric criterion: the triviality of the Reeb class of S is equivalent to the
unimodularity of the regular Poisson manifold (M,Π). As a consequence, the unimodularity of a
regular Poisson manifold only depends on its characteristic (symplectic) foliation rather than the
leaf-wise symplectic form (see also [14, Corollary 9]). Along with the standard approaches [31, 1],
one can characterize the Reeb class in different ways, for example, by using the Bott connection [83,
Section 5] or, as the modular class of the associated Lie algebroid [22, 36].

We are interested in a generalization of these results to the case of Poisson manifolds with singular
symplectic foliations, for which it does not exist a direct analog of the Reeb class. Our goal is to
study the behavior of the modular class of an orientable Poisson manifold (M,Π) and formulate some
unimodularity criteria in the semilocal context, around a possibly singular symplectic leaf S.

Due to local Weinstein’s splitting theorem [82], the unimodularity of Π in a neighborhood of a
singular point is provided by the unimodularity of the transverse Poisson structure of the point. In
the nonzero dimensional case, we describe some obstructions to the semilocal unimodularity of the
leaf which are related to some “tangential” and “transversal” characteristics of S. In particular,
in Proposition 6.18 we show that the unimodularity of a transverse Poisson structure P of S is a
necessary condition for Mod(M,Π) = 0. Moreover, it is proved in Theorem 6.19 that, under the
vanishing of the modular class of P , some cohomological obstructions possibly appear in the first
cohomology of the associated cochain complex [71, 78]. It is shown in Theorem 6.16 that, in the case
when the neighborhood of the leaf is “flat”, these obstructions are directly related to the Reeb class
of a foliation. In particular, this occurs in the regular case.

Our main results are based on the formula of Proposition 6.5 for a bigraded decomposition of
the modular vector fields of coupling Poisson structures on a foliated manifolds, which involves the
modular vector field of the associated Poisson foliation. We also show in Proposition 6.3 that the
modular vector field of the Poisson foliation is related to the Reeb class. Also, in Proposition 6.9, we
study the behavior of the unimodularity property under gauge equivalence [79, 9]. A similar problem
for the Morita equivalence of Poisson structures was studied in [28, 14].



Chapter 5

Semilocal Splitting of the First Cohomology

A geometric description of the first Poisson cohomology group is given in the semilocal context, around
possibly singular symplectic leaves. This result is based on the splitting theorems for infinitesimal
automorphisms of coupling Poisson structures which describe the interaction between the tangential
and transversal data of the characteristic distributions. As a consequence, we derive some criteria
of vanishing of the first Poisson cohomology group and apply the general splitting formulas to some
particular classes of Poisson structures associated with singular symplectic foliations.

This chapter is organized as follows. In Section 5.1, we briefly recall some notions and facts about
Ehresmann connections. In Section 5.2, we review some properties of coupling Poisson structures and
formulate the result on the Lichnerowicz-Poisson complex in coupling neighborhoods of a symplectic
leaf. In Section 5.3, we present our main results on the infinitesimal automorphisms of coupling
Poisson structures and give a proof of Theorem 5.12. In the last three sections, 5.4-5.6, the general
results are applied to some particular cases.

The contents of this chapter, with exception of Sections 5.7 and 5.8, were published in [71].

5.1 Covariant exterior derivatives

In this section, we recall some notions and facts in the theory of Ehresmann connections on fiber
bundles which will be used throughout the text (for more details, see [35, 65, 78]).

Let E
π→ B be a fiber bundle (a surjective submersion) over a manifold B. Denote by V :=

ker dπ ⊂ TE the vertical subbundle and by V ◦ ⊂ T ∗E its annihilator. The sections of the vector
bundles ∧qV and ∧pV ◦ are called the vertical q-vector fields and horizontal p-forms on with respect
to E

π→ B, respectively. In particular, Γ(∧0V ◦) = C∞(E).

Recall that a vector field X ∈ Γ(TE) is said to be π-related to u ∈ Γ(TB), if dπ ◦ X = u ◦ π.
In this case, we say that X is π-projectable. It is clear that π-projectable vector fields form an R-Lie
subalgebra of Γ(TE), which will be denoted by Γπ-pr(TE). Given any vector subbundle F ⊂ TE,
we will also use the notation Γπ-pr(F ) := Γπ-pr(TE) ∩ Γ(F ) throughout this text. Note that every
π-projectable vector field X ∈ Γπ-pr(TE) has the property [X,Γ(V )] ⊆ Γ(V ). Conversely, in the case

when the fibers of E
π→ B are connected, this property characterizes the π-projectability of vector

fields.

On the other hand, recall that an Ehresmann connection on E is a vector bundle morphism
γ : TE → TE such that γ2 = γ and is the identity on the vertical subbundle, γ(Y ) = Y for all
Y ∈ Γ(V ). Therefore, γ induces a splitting

TE = H ⊕ V, (5.1)
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whereH = Hγ := ker γ is the horizontal subbundle associated with γ. Conversely, given a subbundleH
complementary to V , one can recover the Ehresmann connection from H by setting γ = prV : TE → V
(the projection along H).

Suppose we are given an Ehresmann connection γ. The smooth sections of the vector bundles ∧pH
and ∧qH0 are said to be horizontal p-vector fields and the vertical q-forms on E, respectively. The
horizontal lift of u ∈ Γ(TB) with respect to γ is the unique horizontal vector field horγ(u) ∈ Γ(H)
which is π-related with u. Therefore, the horizontal lifts are π-projectable and hence, satisfy the
following condition:

[horγ(u),Γ(V )] ⊂ Γ(V ). (5.2)

Consider the C∞(B)-module Ωp,q
B (E) := Γ(∧pT ∗B)⊗C∞(B) Γ(∧qV ) of all p-forms on B with values

in vertical q-vector fields on E. In particular, by property (5.2), the Lie derivative Lhorγ(u) leaves
invariant the subspaces Γ(∧qV ) of vertical tensor fields. Hence, the γ-covariant exterior derivative
γ
1,0 : Ωp,q

B (E)→ Ωp+1,q
B (E) is defined by the standard formula

( γ
1,0η)(u0, u1, . . . , up) :=

p∑
i=0

(−1)iLhorγ(ui)η(u0, u1, . . . , ûi, . . . , up) (5.3)

+
∑

0≤i<j≤p
(−1)i+jη([ui, uj ], u0, . . . , ûi, . . . , ûj , . . . , up).

The curvature form Curvγ ∈ Ω2,1
B (E) of the connection γ is given on u1, u2 ∈ Γ(TB) by

Curvγ(u1, u2) := [horγ(u1), horγ(u2)]− horγ([u1, u2]).

The Bianchi identity reads γ
1,0 Curvγ = 0. Moreover, we have the identity

(( γ
1,0)2η)(u0, . . . , up+1) = −

∑
0≤i<j≤p+1

(−1)i+jLCurvγ(ui,uj)η(u0, u1, . . . , ûi, . . . , ûj , . . . , up+1) (5.4)

which says that γ
1,0 is a coboundary operator if and only if the connection γ is flat, i.e., Curvγ =

0. Geometrically, the zero curvature condition is equivalent to the integrability of the horizontal
subbundle H.

The splitting (5.1) induces the following H-dependent bigrading of multivector fields on E:

Γ(∧kTE) =
⊕
p+q=k

Γ(∧p,qTE), (5.5)

where ∧p,qTE := ∧pH ⊗ ∧qV . For any k-vector field A on E, the term of bidegree (p, q) in
decomposition (5.5) is denoted by Ap,q. Moreover, the dual splitting T ∗E = V ◦ ⊕ H0 induces a
bigrading of differential forms on E, as follows:

Γ(∧kT ∗E) =
⊕
p+q=k

Γ(∧pV ◦ ⊗ ∧qH0).

We observe that there exists a natural identification

Ωp,0
B (E) = Γ(∧pT ∗B)⊗C∞(B) C

∞(E) ∼= Γ(∧pV ◦).
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Indeed, one can associate to every η ∈ Ωp,0
B (E) a horizontal p-form π∗η ∈ Γ(∧pV ◦), given for

X1, . . . , Xp ∈ Γ(TE) and e ∈ E by

(π∗η)(X1, . . . , Xp)(e) := η(de π(X1), . . . ,de π(Xp)).

Since V = ker dπ, it is clear that π∗η ∈ Γ(∧pV ◦). Therefore, if we fix an Ehresmann connection γ,
then π∗η is uniquely determined by its values on horizontal lifts, namely,

(π∗η)(horγ(u1), . . . ,horγ(up)) = η(u1, . . . , up).

Moreover, from (5.3), we get the relation

π∗( γ
1,0η) = (d(π∗η))p+1,0, (5.6)

where d is the exterior differential for forms on E.

5.2 Coupling neighborhoods

In this section, we recall some properties of coupling Poisson structures on fiber bundles and their
applications to describe the geometry of Poisson manifolds around its symplectic leaves. For more
details, see [50, 65, 77, 78].

Coupling Poisson structures. Let E
π→ B be a fiber bundle and V ◦ ⊂ T ∗E the annihilator of the

vertical subbundle V .

Definition 5.1. The Poisson structure defined by a bivector field Π ∈ Γ(∧2TE) is said to be a coupling
Poisson structure on the fiber bundle if

TE = H ⊕ V, where H := Π](V ◦). (5.7)

Note that every coupling Poisson structure Π has the bigraded decomposition of the form Π =
Π2,0 + Π0,2, where Π2,0 ∈ Γ(∧2H) is a horizontal bivector field of constant rank, rank Π2,0 = rankH,
and Π0,2 ∈ Γ(∧2V ) is a vertical Poisson tensor. The characteristic distribution of Π is the direct sum
of the horizontal bundle H and the characteristic distribution of Π0,2,

Π](T ∗E) = H ⊕Π]
0,2(H0).

It follows that the fibers of the projection π intersect the symplectic leaves of Π transversally and
symplectically. Moreover, the restriction of Π]

2,0 : T ∗E → TE to V ◦ is a vector bundle isomorphism
onto H.

One can associate to a given coupling Poisson tensor Π the geometric data (P, γ, σ) consisting of
the Ehresmann connection γ ∈ Γ(T ∗E ⊗ B) associated with the horizontal subbundle H = Π](V ◦),
a nondegenerated 2-form σ ∈ Γ(∧2T ∗B) ⊗C∞(B) C

∞(E), called the coupling form, and the vertical

Poisson bivector field P := Π0,2 ∈ Ω0,2
B (E). The nondegeneracy of the 2-form σ means that the vector

bundle morphism (π∗σ)[ : H → V ◦ is an isomorphism. In terms of the horizontal part of Π, the
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coupling form is given by (π∗σ)[ = −
(

Π]
2,0 |V ◦

)−1
. One can show that the geometric data satisfy the

structure equations

[P, P ] = 0, (5.8)

Lhorγ(u)P = 0, (5.9)

Curvγ(u, v) = −P ]dσ(u, v), (5.10)
γ
1,0σ = 0, (5.11)

for any u, v ∈ Γ(TB), which give a factorization of the Jacobi identity for Π. Condition (5.9) means
that the connection γ on the Poisson fiber bundle (E

π−→ B,P ) is Poisson. In general, the curvature
Curvγ ∈ Ω2,1

B (E) of a Poisson connection takes values in the space of vertical Poisson vector fields of P .
The curvature identity (5.10) says that Curvγ(u, v) is a Hamiltonian vector field for any u, v ∈ Γ(TB).
Moreover, the coupling 2-form σ must be γ-covariantly constant (condition (5.11)). We say that some
geometric data are integrable if they satisfy (5.8)-(5.11).

Conversely, every integrable geometric data (P, γ, σ) defines a coupling Poisson tensor Π on E
under the nondegeneracy condition for σ.

Bigrading of the Lichnerowicz-Poisson complex. Following [15], let us associate to the
geometric data (P, γ, σ) of a coupling Poison tensor Π ∈ Γ(∧2TE) the following cochain complex.
Consider the Schouten-Nijenhuis bracket [·, ·] : Γ(∧k1TE) × Γ(∧k2TE) → Γ(∧k1+k2−1TE) for
multivector fields on the total space E defined in such a way that the triple (Γ(∧TE),∧, [·, ·]) is
a graded Poisson algebra of degree −1 (see [21]). It is clear that the Schouten-Nijenhuis bracket of
two vertical multivector fields on E is again vertical. As a consequence, we can endow the bigraded
C∞(B)-module

M•• =
∞⊕
k=0

Mk, Mk :=
⊕
p+q=k

Ωp,q
B (E).

with a structure of graded Poisson algebra of degree −1, (M••,∧, [·, ·]). Explicitly, for η ∈ Ωp,q
B (E)

and θ ∈ Ωp′,q′

B (E), we have [15, 50]

(η ∧ θ)(u1, . . . , up+p′) := (−1)p
′q
∑
τ

sgn(τ)η(uτ(1), . . . , uτ(p)) ∧ θ(uτ(p+1), . . . , uτ(p+p′)),

[η, θ](u1, . . . , up+p′) := (−1)p
′(q−1)

∑
τ

sgn(τ)[η(uτ(1), . . . , uτ(p)), θ(uτ(p+1), . . . , uτ(p+p′))],

where ui ∈ Γ(TB). Here, in the right-hand sides of these equalities, the symbols ∧ and [·, ·] denote the
exterior product and the Schouten-Nijenhuis bracket on Γ(∧∗V ), respectively. Thus, every element
θ ∈ Ωp,q

B (E) induces a graded derivation adθ of bidegree (p, q − 1), defined by the adjoint operator
adθ(·) = [θ, · ]. In particular, the vertical Poisson bivector field P ∈ Γ(∧2V ) induces the derivation
δP := adP : Ωp,q

B (E)→ Ωp,q+1
B (E) of bidegree (0, 1) given by

(adP η)(u1, . . . , up) := (−1)p[P, η(u1, . . . , up)].

This is a coboundary operator which gives rise to the vertical Poisson complex (⊕∞q=0Ω0,q
B (E), δP ).
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Now, using the geometric data (P, γ, σ), we can define an operator : M•• →M•• as the sum of
bigraded operators

:= σ
2,−1 + γ

1,0 + P
0,1, (5.12)

where σ
2,−1 := − adσ, γ

1,0 is the covariant exterior derivative (see Section 5.1), and P
0,1 := δP .

Observe that the integrability conditions for the geometric data (P, γ, σ) mean that is a coboundary
operator, 2 = 0. Indeed, computing the bigraded components of 2, we get that equations (5.8)-(5.11)
are equivalent to the following relations:

( P
0,1)2 = 0, (5.13)

γ
1,0

P
0,1 + P

0,1
γ
1,0 = 0, (5.14)

σ
2,−1

P
0,1 + P

0,1
σ
2,−1 + ( γ

1,0)2 = 0, (5.15)
σ
2,−1

γ
1,0 + γ

1,0
σ
2,−1 = 0. (5.16)

Moreover, by the Jacobi identity for the bracket on M, one can show that ( σ
2,−1)2 = 0.

Various versions of the following fact can be found in [15, 50].

Proposition 5.2. Let Π ∈ Γ(∧2TE) be a coupling Poisson tensor on E
π→ B and let (P, γ, σ)

be the geometric data associated with Π. Then the Lichnerowicz-Poisson complex (Γ(∧•TE), δΠ) is
isomorphic to the cochain complex (M••, ).

Proof. Consider the decomposition of multivector fields (5.5). Note that each A ∈ Γ(∧p,qTE) can
be viewed as a C∞(B) p-linear skew-symmetric map A : Γ(V ◦) × · · · × Γ(V ◦) → Γ(∧qV ). Define
[σA ∈Mp,q by

([σA)(u1, . . . , up) := (−1)pA((π∗σ)[ horγ u1, . . . , (π
∗σ)[ horγ up). (5.17)

for any ui ∈ Γ(TB). We claim that the map [σ : Γ(∧TE) → M is a cochain complex isomorphism.
Since (π∗σ)[|H = − (Π2,0|V ◦)−1 is a vector bundle isomorphism, it follows that [σ is an exterior algebra
isomorphism. By the property that every graded derivation of Γ(∧TE) is determined by its action on
C∞(E) and Γ(TE), it suffices to show that [σ ◦ δΠ = ◦ [σ holds on C∞(E), Γ(V ) and Γ(H).

For every f ∈ C∞(E), we have ([σ ◦ δΠ)(f) = [σ[Π2,0, f ] + [P, f ] and ( ◦ [σ)(f) = γ
1,0f + [P, f ].

Moreover, [σ[Π2,0, f ](u) = df(horγ u) = γ
1,0f(u).

Next, let X ∈ Γ(V ). By bigrading arguments, the equality ([σ ◦ δΠ)(X) = ( ◦ [σ)(X) splits
into three equations: [σ[Π, X]1,1 = γ

1,0X, [σ[Π, X]0,2 = δPX, and [σ[Π, X]2,0 = −adσX. For the
first equation, by definition, we have [σ[Π, X]1,1(u) = [horγ u,X] = γ

1,0X(u). The second one
holds because of [Π2,0, X]0,2 = 0. The last equation follows from [σ[Π, X]2,0(u, v) = [X,σ(u, v)] =
−adσX(u, v).

Finally, for X = horγ u, u ∈ Γ(TB), the equality ([σ ◦δΠ)(X) = ( ◦[σ)(X) splits into the following
relations: γ

1,0[σ(X) = [σ[Π, X]2,0, δP [σ(X) = [σ[Π, X]1,1, and 0 = [σ[Π, X]0,2. The verification of
these equalities is straightforward by using the structure equations (5.8)-(5.11). �

As a consequence of Proposition 5.2, we conclude that the infinitesimal automorphisms of the
coupling Poisson structure Π are determined by the 1-cocycles η = η1,0 + η0,1 ∈ Z1 of which are the
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solutions to the equations:

P
0,1(η0,1) = 0, (5.18)

γ
1,0(η0,1) + P

0,1(η1,0) = 0, (5.19)
γ
1,0(η1,0) + σ

2,−1(η0,1) = 0. (5.20)

In the next section, we describe the infinitesimal automorphisms of coupling Poisson structures in
terms of the solutions of these equations.

Coupling neighborhood of a symplectic leaf. Let (M,Ψ) be a Poisson manifold and B ⊂ M
an embedded symplectic leaf. Let π : E → B, E = TBM�TB be the normal bundle of the leaf. By a
tubular neighborhood of a symplectic leaf B, we mean an open neighborhood N of B in M together
with an exponential map f : U → N , that is, a diffeomorphism from an open neighborhood U of the
zero section B ↪→ E onto N satisfying the conditions: f |B = idB and ν ◦ dBf = τ . Here, τ : TBE → E
is the projection along TB according to the decomposition TBE = TB ⊕ E and ν : TBM → E is the
natural projection. These properties imply that the differential dBf : TBE → TBM sends the fibers
of the normal bundle to transverse subspaces to the leaf B ⊂M , TBM = TB ⊕ (dBf)(E).

Definition 5.3. A tubular neighborhood (N, f) of the symplectic leaf B of (M,Ψ) is said to be a
coupling neighborhood if the pull-back Π := f∗(Ψ|N ) is a coupling Poisson structure on the fiber
bundle πU : U → B.

Given a coupling neighborhood (N, f) of B, we have the bigraded decomposition Π = Π2,0 + Π0,2.
Hence, Ψ|N = ΨH+ΨV , where ΨH = f∗Π2,0 is a bivector field onN of constant rank, rank ΨH = dimB,
and ΨV = f∗Π0,2 is a Poisson tensor on N vanishing at B and tangent to the vertical subbundle
df(ker dπU ) ⊂ TNM over the tubular neighborhood. The bivector field ΨV is said to be a transverse
Poisson structure around the leaf B and can be viewed as the result of gluing the local transverse
Poisson structures on the vertical fibers due to the local splitting Weinstein theorem [82]. Furthermore,
one can show that the different choices of exponential maps lead to isomorphic transverse Poisson
structures. Notice that, in the case when the symplectic leaf B is regular, the coupling neighborhood
N may be chosen in such a way that the transverse Poisson structure is identically zero, ΨV ≡ 0.
This follows from the property: rankm Ψ = dimB + rankm ΨV for every m ∈ N . Observe also that

the linearization of Π0,2 at B gives a vertical fiberwise linear Poisson structure Π
(1)
0,2. This Lie algebra

is called the linearized transverse Poisson structure of the leaf B [82], which is well defined on the

whole total space E. As a consequence, we get an intrinsic locally trivial Lie-Poisson bundle (E,Π
(1)
0,2)

over B whose typical fiber is the co-algebra g∗ of a Lie algebra g called the isotropy algebra of the
symplectic leaf.

As is known [77], each embedded symplectic leaf B admits a coupling neighborhood and hence, by
Proposition 5.2, the computation of the Poisson cohomology around B is reduced to the study of the
bigraded cochain complex (M••, ) attributed to a coupling Poisson structure Π.

5.3 Infinitesimal automorphisms of coupling Poisson structures

Suppose we are given a coupling Poisson tensor Π on a fiber bundle π : E → B associated with
an integrable geometric data (P, γ, σ). As we saw in the previous section, the infinitesimal Poisson
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automorphisms of Π are related to the solutions of equations (5.18)-(5.20). Our goal is to describe
these solutions in terms of the geometric data (P, γ, σ). To formulate the main results, let us introduce
the following objects.

The coboundary operator
γ
. Consider the space Casim(E,P ) of all Casimir functions of the

vertical Poisson tensor P on E. It is clear that π∗C∞(B) ⊆ Casim(E,P ). For each p ∈ Z, define the
C∞(B)-submodule N p ⊆ Ωp,0

B (E) by

N p := Ωp(B)⊗C∞(B) Casim(E,P ).

In particular, N 0 = Casim(E,P ). Since the Poisson vector fields of P preserve the space of Casimir
functions, by (5.9) and definition (5.3), we have γ

1,0(N p) ⊂ N p+1. Hence one can define the operator

γ
:= γ

1,0|N p . (5.21)

Then, by (5.4) and the curvature identity (5.10), we conclude that
γ

is a coboundary operator,
γ ◦ γ

= 0. The pair (N •, γ
) is call the de Rham-Casimir complex. The p-cohomology space of

γ

is Hp
γ :=

Zpγ

Bpγ
, where Zpγ and Bp

γ are the spaces of
γ
-closed and

γ
-exact p-forms, respectively.

Consider the Lie algebra Poiss(E,Π) of Poisson vector fields of the coupling Poisson structure Π.
Let ]H : Ω1,0

B (E)→ Γ(H) be a linear mapping given by

]H(α) := Π]
2,0(π∗α).

By the horizontal nondegeneracy of Π2,0, it follows that ]H : Ω1,0
B (E)→ Γ(H) is an isomorphism.

Lemma 5.4. The image of the space of 1-cocycles Z1
γ under the isomorphism ]H coincides with the

space of Poisson vector fields of Π tangent to the horizontal distribution,

]H(Z1
γ ) = Γ(H) ∩ Poiss(E,Π). (5.22)

Proof. Consider the vector bundle morphism Π] : T ∗M → TM associated with the bivector field
Π. For every 2-form µ ∈ Ω2(E), one can associate a bivector field Π]µ ∈ Γ(∧2TE) defined by
(Π]µ)(η1, η2) := µ(Π]η1,Π

]η2). Then, one has [Π,Π](π∗α)] = −Π](dπ∗α). Moreover, we observe that,
for any η ∈ Ω1(E) and µ ∈ Ω2(E) such that η0,1 = 0 and µ0,2 = 0, the following identities hold:

Π]η = Π]
2,0η and Π]

2,0µ = Π]
2,0µ2,0. Setting η = π∗α, and µ = dπ∗α and combining these properties

with (5.6), we get

[Π, ]H(α)] = [Π,Π]
2,0(π∗α)] = [Π,Π](π∗α)] = −Π](dπ∗α) (5.23)

and
Π]

2,0(π∗(
γ
α)) = Π]

2,0(dπ∗α)2,0 = Π]
2,0(dπ∗α). (5.24)

Finally, observe that α ∈ N 1 if and only if iP ]ηdπ
∗α = 0 ∀η ∈ Ω1(E), which is equivalent to Π](dπ∗α) =

Π]
2,0(dπ∗α). Therefore, from (5.23) and (5.24), it follows that [Π, ]H(α)] = 0 if and only if

γ
α = 0. �

Remark 5.5. Notice that Lemma 5.4 can be deduced from Proposition 5.2. Indeed, the cochain
complex isomorphism [σ : Γ(∧TE) → M satisfies ]H = −([σ|Γ(H))

−1. Thus, ]H(Ω1,0
B (E) ∩ Z1) =

Γ(H) ∩ Poiss(E,Π). Since Z1
γ = Ω1,0

B (E) ∩ Z1, the result follows.
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The Lie algebra Aγ. Let Ham(E,P ) ⊂ Γ(V ) be the Lie algebra of Hamiltonian vector fields of the
vertical Poisson tensor P on E. Consider the Poisson connection γ on (E,P ). The set of all vertical
Poisson vector fields is a Lie algebra

PoissV (E,P ) := {Y ∈ Γ(V ) | LY P = 0}

for which Ham(E,P ) is an ideal. Furthermore, by (5.2) and (5.9), we have

[horγ(u),PoissV (E,P )] ⊆ PoissV (E,P ) ∀u ∈ Γ(TB).

One can associate to the triple (E,P, γ) the subspace Aγ⊂PoissV (E,P ) of vertical Poisson vector
fields determined by the condition

[horγ(u),Aγ ] ⊆ Ham(E,P ) ∀u ∈ Γ(TB)

or, more precisely,

Aγ := {Y ∈ PoissV (E,P ) | [horγ(u), Y ] ∈ Ham(E,P ) ∀u ∈ Γ(TB)}. (5.25)

Observe that Aγ is a Lie algebra and Ham(E,P ) ⊆ Aγ is an ideal. These properties follow from the
identity

[X,P ]dF ] = P ]dLXF

for any Poisson vector field X of P . Moreover, for every Y ∈ Aγ there exists a 1-form βY ∈ Ω1,0
B (E) =

Ω1(B)⊗C∞(B) C
∞(E) such that

[horγ(u), Y ] = −P ]dβY (u) ∀u ∈ Γ(TB). (5.26)

This follows from a partition of unity argument applied to an open coordinate covering of the base B,
and the fact that P is vertical.

The homomorphism ργ : Aγ → H2
γ . Given an arbitrary vector field Y ∈ Aγ and fixing a 1-form

βY ∈ Ω1(B)⊗C∞(B)C
∞(E) in (5.26), we associate to Y an element τY ∈ Ω2(B)⊗C∞(B)C

∞(E) given
by

τY := γ
1,0βY + LY σ. (5.27)

Here, the Lie derivative LY : Ωp,q
B (E)→ Ωp,q

B (E) along an arbitrary vertical vector field Y is given on
u1, . . . , uk ∈ Γ(TB) by the formula (LY η)(u1, . . . , uk) := LY (η(u1, . . . , uk)). Note that we also have
the equality LY σ = σ

2,−1Y .
By using the structure equations (5.8)-(5.11), one can show that the 2-form τY takes values in

Casimir functions, τY ∈ N 2. Indeed, from (5.27), we have

τY (u1, u2) = Lhorγ(u1)βY (u2)− Lhorγ(u2)βY (u1)− βY ([u1, u2]) + LY σ(u1, u2). (5.28)

Next, for every Poisson vector field Z of P , we have LZ ◦P ] = P ] ◦LZ . Using this property, equality
(5.28), the curvature identity (5.10) and (5.26), by direct computation we verify that P ]dτY (u1, u2) =
0.
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Now, we observe that the 2-form τY is
γ
-closed,

γ
τY = 0. Indeed, this can be verified by

straightforward computations and by applying again (5.27), (5.4), (5.10), (5.26), and (5.11). Moreover,
the cohomology class [τY ] ∈ H2

γ is independent of the choice of βY in (5.26). To see this, observe

that any other element β′Y ∈ Ω1,0
B (E) satisfying (5.26) is of the form β′Y = βY + cY for some cY ∈ N 1.

Then, the corresponding τY and τ ′Y are related by τ ′Y = τY +
γ
cY and hence, [τ ′Y ] = [τY ]. So, we

have proved the following fact.

Lemma 5.6. There exists an intrinsic homomorphism

ργ : Aγ → H2
γ (5.29)

which assigns to every vertical vector field Y ∈ Aγ the
γ
-cohomology class of the 2-form τY ,

ργ(Y ) := [τY ].

It is easy to see that every Hamiltonian vector field of P belongs to the kernel of ργ and hence we
have the inclusions:

Ham(E,P ) ⊆ ker ργ ⊆ Aγ ⊆ PoissV (E,P ). (5.30)

Consider the projection prV : Γ(TE)→ Γ(V ) associated with the splitting TE = H⊕V , prV (X) =
X0,1. It is clear that ker prV = Γ(H).

Lemma 5.7. The image of Poiss(E,Π) under the projection prV coincides with the kernel of ργ,

prV (Poiss(E,Π)) = ker ργ .

Proof. Let Z ∈ Poiss(E,Π) be an infinitesimal automorphism of Π. Since the map ]H : Ω1,0
B (E) →

Γ(H) is an isomorphism, there exist unique Y ∈ Γ(V ) and β ∈ Ω1,0
B (E) such that Z = −]Hβ+Y . Let

us show that Y ∈ ker ργ . If [σ : (Γ(∧•TE), δΠ)→ (M••, ) is the cochain complex isomorphism (5.17),
then [σZ = β + Y . Since Z ∈ Z1

Π(E), we have β + Y ∈ Z1. Explicitly, this means that η := β + Y
must satisfy equations (5.18)-(5.20). Note that (5.18) means that Y ∈ PoissV (E,P ). Moreover, by
evaluating the left-hand side of (5.19) on u ∈ Γ(TB), we get that β and Y satisfy (5.26), so Y ∈ Aγ .
Finally, (5.20) implies that τY = 0 and hence, ργ(Y ) = 0, as desired. Conversely, pick an arbitrary
Y ∈ ker ργ . Since ker ργ ⊆ Aγ , there exists a 1-form βY ∈ Ω1,0

B (E) satisfying (5.26). Next, by the

definition of ργ , there exists a primitive cY ∈ N 1 of the 2-cocycle τY ∈ Z2
γ in (5.27) so that

γ
cY = τY .

Then, one can easily verify that

XY := −]H(βY − cY ) + Y ∈ Poiss(E,Π). (5.31)

This means that every element Y ∈ ker ργ can be extended to a Poisson vector field X of Π in the
sense that X0,1 = Y . �

Corollary 5.8. The Poisson vector fields of the coupling Poisson structure Π are of the form

]H(α) +XY , (5.32)

where α ∈ Z1
γ and Y ∈ ker ργ ⊂ Aγ are arbitrary elements.
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In particular, it follows that a Poisson vector field X ∈ Poiss(E,Π) is tangent to the symplectic
foliation of Π if and only if prV (X) is tangent to the symplectic foliation of the vertical Poisson
structure P .

By Lemma 5.6 and Lemma 5.7, we conclude that Poiss(E,Π) fits into the short exact sequence of
vector spaces

0→ Z1
γ

]H−→ Poiss(E,Π)
prV−→ ker ργ → 0. (5.33)

Summarizing the above considerations, we get the following splitting theorem for infinitesimal
automorphisms of a coupling Poisson structure.

Theorem 5.9. Let Π = Π2,0 + P be the coupling Poisson tensor on E and (P, γ, σ) its integrable

geometric data. Let (Aγ , γ
, ργ) be the associated set up. Then, there is a vector space isomorphism

Poiss(E,Π) ∼= Z1
γ ⊕ ker ργ . (5.34)

Now, let us consider the spaces of Hamiltonian vector fields Ham(E,Π) and Ham(E,P ) of the
Poisson structures Π and P , respectively. Recall that the space B1

γ consists of
γ
-exact 1-forms ¯γk,

with k ∈ Casim(E,P ). Then, by using (5.6) and the fact that P ](dk) = 0, we get

]H(¯γk) = Π]
2,0(π∗(¯γk)) = Π]

2,0(dk)1,0 = Π]
2,0dk = Π]dk.

This shows that the image of B1
γ under the mapping ]H belongs to Ham(E,Π) and is of the form

]H(B1
γ ) = {Π]

2,0dk | k ∈ Casim(E,P )}.

Furthermore, we have the following result.

Proposition 5.10. There is a short exact sequence:

0→ B1
γ

]H−→ Ham(E,Π)
prV−→ Ham(E,P )→ 0. (5.35)

Proof. By the nondegeneracy property of Π]
2,0, the mapping ]H is injective and hence, ker ]H = {0}. On

the other hand, by the bigraded decomposition Π = Π2,0 +P , we conclude that Π]df = Π]
2,0df +P ]df .

This implies the equality prV (Ham(E,Π)) = Ham(E,P ). It follows also that prV (Π]df) = P ]df = 0
if and only if f ∈ Casim(E,P ) and hence, ker prV = Im ]H . �

We observe that a necessary condition for a vector field X being Hamiltonian relative to Π and a
function f is that, the vertical part X0,1 of X is Hamiltonian relative to P and the same function f .

Notice also that the Poisson vector field ]H(α) is Hamiltonian relative to Π if and only if α is
γ
-exact.

By (5.33), (5.35), we have the following short exact sequence of the cohomology spaces

0→
Z1

γ

B1
γ

]H−→ Poiss(E,Π)

Ham(E,Π)

prV−→ ker ργ

Ham(E,P )
→ 0.

So, we arrive at the main result.
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Theorem 5.11. Let Π be a coupling Poisson tensor on a fiber bundle π : E → B, with associated
geometric data (P, γ, σ). Let also (N •0 , ) be the de Rham - Casimir complex of P and γ, and consider
the map ργ : Aγ → H2

γ in (5.29). The first Poisson cohomology of (E,Π) is

H1
Π(E) ∼= H1

γ ⊕ ker ργ

Ham(E,P )
. (5.36)

By taking into account the facts in Section 5.2, we derive the statement of Theorem 5.12 as a
consequence of this result.

Theorem 5.12. Let S ⊂ M be an embedded symplectic leaf of the Poisson manifold (M,Ψ). Then,
there exists a tubular neighborhood N of S in M such that

Ψ = ΨH + ΨV on N,

where ΨH is a bivector field on N of constant rank, rank ΨH = dimS and ΨV is a Poisson bivector
field on N vanishing at S. Moreover, the first cohomology group of the Poisson structure Ψ fits in the
following short exact sequence:

0→ H1(N0, )
Ψ]

↪→ H1
Ψ(N)

prV−→ ker{ρ : A −→ H2(N0, )}
Ham(N,ΨV )

.

Regular symplectic leaves. As mentioned in the introduction, formula (5.36) coincides with some
well-known results [62, 74] in the regular case. Recall that the semilocal model for a Poisson structure
Ψ on M around an embedded regular symplectic leaf (B,ωB) is represented by a coupling Poisson
structure Π on the normal vector bundle π : E → B with associated geometric data of the form
(P = 0, γ0, σ = ωB ⊗ 1 + C) and having the zero section B ↪→ E as a symplectic leaf. Here, γ0 is a
flat Ehresmann connection on E whose horizontal distribution is just the tangent bundle TS of the
symplectic foliation (S, ω) of Π. The coupling form σ is determined by the symplectic form ωB of the

leaf and a γ0

1,0-closed 2-form C ∈ Ω2,0
B (E) vanishing at B.

Proposition 5.13. We have the following relations:

H1
¯γ0
∼= H1

dR(S) and ker ργ
0

= {Y ∈ ΓS-pr(V ) | LY ω is dS-exact} .

Proof. Because of the triviality of the transverse Poisson structure of B, we have Casim(E,P ) =

C∞(E). Then, taking into account that (N •, γ0

) = (Ω∗,0B (E), γ0

1,0), we conclude that there exists

a natural identification of the cochain complexes (Γ(∧T ∗S), dS) and (N •, γ0

). In particular, the
leafwise symplectic form ω of Π coincides with the coupling form σ. Moreover, by definition (5.25)
and the relations PoissV (E,P ) = Γ(V ) and Ham(E,P ) = {0}, we get that

Aγ0
= {Y ∈ Γ(V ) | [horγ0(u), Y ] = 0 ∀u ∈ Γ(TB)}

coincides with the space of vertical vector fields preserving the symplectic foliation, Aγ0
= ΓS-pr(V ).

So, we can think of the homomorphism ργ
0

: Aγ0 → H2
¯γ0 as a mapping ΓS-pr(V ) → H2

dR(S) which

sends an element Y to the dS-cohomology class [LY ω]. �

In the next three sections, we discuss some other particular cases to which formula (5.36) can be
effectively applied.
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Spectral sequences. Here we briefly discuss an alternative algebraic approach to the computation
of the first cohomology of the bigraded complex introduced in Section 5.2 (see also [62, 64], for the
use of spectral sequences in the computation of Poisson cohomology).

Consider the nonnegative cochain complex (M• =
⊕

n∈ZM
n, ), where

Mn =
⊕
p+q=n

Ωp,q
B (E)

and the differential operator is given by (5.12). Consider a filtration F of M defined as

F pMn :=
⊕
p≤k≤n

Ωk,n−k
B (E).

Then,

Mn = F 0Mn ⊃ F 1Mn ⊃ · · · ⊃ FnMn = Ωn,0
B (E) ⊃ Fn+1Mn = {0}

and hence the filtration F is bounded [47]. Moreover, the bigraded decomposition (5.12) provides the
inclusions (F pMn) ⊆ F pMn+1 for all p and n. Therefore, (M, ,F ) is a graded filtered complex.

Now, consider the spectral sequence (Er, dr)r≥0 associated with (M, ,F ). Observe that
(Er, dr)r≥0 is a first quadrant spectral sequence.

Lemma 5.14. The spectral sequence (Er,dr)r≥0 converges to the cohomology of the cochain complex
(M, ). Moreover, we have the following isomorphism of vector spaces

H1(M, ) ∼= E1,0
2 ⊕ E0,1

3 . (5.37)

Proof. Since (Er,dr)r≥0 is a first quadrant spectral sequence, for every p, q ∈ Z we have Ep,q∞ = Ep,qN ,
where N = max{p+ 1, q + 2}. Then, the convergence and relation (5.37) follow from the fact that F
is bounded (see [47]). �

To compute E1,0
2 and E0,1

3 in the notations introduced in Section 5.2, we use the explicit general
formulas for the E-terms of a spectral sequence, given as in [21, Subsection 2.4.1]:

Ep,qr =
ker( |Mp+q) ∩ F pMp+q + F p+1Mp+q

Im( |Mp+q−1) ∩ F pMp+q + F p+1Mp+q
, r ≥ max{p+ 1, q + 2}.

The direct computations give

E1,0
2 =

ker( |M1,0)

Im( γ
1,0|ker P

0,1∩M0)
=
Z1

γ

B1
γ

= H1
γ ,

E0,1
3 =

ker( |M1) + M1,0

Im( |M0) + M1,0
=

prV (ker( |M1))⊕M1,0

prV (Im( |M0))⊕M1,0
∼=

ker ργ

Ham(E,P )
,

where we use the relations: prV (ker( |M1)) = ker ργ and prV (Im( |M0)) = Ham(E,P ), where the last
one follows from Lemma 5.7. This shows that formula (5.37) coincides with (5.36) under the cochain
complex isomorphism [σ (see the proof of Proposition 5.2).
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5.4 Vanishing of the first Poisson cohomology

Here, by using the results of the previous section, we present some sufficient conditions for the vanishing
of the first Poisson cohomology.

Let π : E → B be a fiber bundle. Suppose that we start again with a coupling Poisson tensor Π
on E with associated geometric data (P, γ, σ). We make the following assumptions. Assume that the
first vertical cohomology group of P is trivial, that is,

PoissV (E,P ) = Ham(E,P ). (5.38)

It follows from (5.9) and (5.38) that the horizontal lifts of every u ∈ Γ(TB) with respect to two
Poisson connections on (E,P ) differ by a Hamiltonian vector field. Then, by (5.3) and definition
(5.21), we conclude that the coboundary operator

γ
is independent of the choice of the Poisson

connection γ on (E
π−→ B,P ) and will be simply denoted by . Therefore, under condition (5.38),

one can associate to the Poisson bundle the intrinsic cochain complex (N ∗ = ⊕pN p, ). Taking into
account (5.38) and (5.30), we conclude that ker ργ = Ham(E,P ) and hence,

Poiss(E,Π) ∼= Z1 ⊕Ham(E,P ).

So, in this case, formula (5.36) for the first Poisson cohomology of Π reads

H1
Π(E) ∼= H1. (5.39)

Next, let us assume that (E,P ) is a flat Poisson bundle, that is,

there exists a flat Poisson connection γ0 on (E,P ). (5.40)

Equivalently, condition (5.40) can be reformulated as follows: there exists a regular foliation F on E
such that

TE = TF⊕V (V := ker dπ) (5.41)

and every π-projectable section of TF is a Poisson vector field on (E,P ),

LZP = 0 ∀Z ∈ Γπ-pr(TF). (5.42)

Then, the horizontal subbundle Hγ0
of the flat Poisson connection γ0 is just the tangent bundle TF of

the foliation. Recall that Γπ-pr(TF) = {horγ
0
(u) | u ∈ Γ(TB)} denotes the space of all π-projectable,

γ0-horizontal vector fields on E.

Let Ωp(F) := Γ(∧pT ∗F) be the space of foliated p-forms on E. In particular, Ω0(F) = C∞(E).
Consider the foliated de Rham complex (Ω•(F) :=

⊕
p∈Z Ωp(F), dF ), where dF : Ωp(F)→ Ωp+1(F) is

the foliated exterior differential given by the standard formula

(dFµ)(X0, . . . , Xp) :=

p∑
i=0

(−1)iLXi(µ(X0, . . . , X̂i, . . . , Xp))

+
∑
i<j

(−1)i+jµ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp).
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The cohomology of (Ω∗(F), dF ) is called the foliated de Rham cohomology and denoted by H∗dR(F).

Observe that (Ω∗(F), dF ) is isomorphic to the cochain complex (Γ(∧∗V ◦), dγ
0

1,0), where dγ
0

1,0 is the

component of bidegree (1, 0) of the exterior differential relative to the flat connection γ0 [65]. More
precisely,

dγ
0

1,0β(Y0, . . . , Yp) := dβ(pTFY0, . . . , pTFYp)

for any β ∈ Γ(∧pV ◦) and vector fields Y0, . . . , Yp on E. Here, pTF : TE → TF is the projection

along V . It follows from (5.4) and (5.6) that (Ω∗,0B (E), γ0

1,0) is a cochain complex is isomorphic to

(Γ(∧∗V ◦), dγ
0

1,0).

Now let us associate to the flat Poisson bundle (E
π→ B,P,F) the following subalgebra of

Hamiltonian vector fields:

HamF (E,P ) := {Y ∈ Ham(E,P ) | [Y,Γπ-pr(TF)] = 0}.

Observe that a Hamiltonian vector field Y on (E,P ) belongs to HamF (E,P ) if and only if the flow
of Y preserves the foliation F . Let C∞F (E) := {H ∈ C∞(E) | dFH = 0} be the space of smooth
functions on E which are constant along the leaves of F .

Theorem 5.15. Suppose that in addition to hypotheses (5.38), (5.40), the following conditions hold:

(i) the first foliated de Rham cohomology group of (E,F) is trivial,

H1
dR(F) = {0}; (5.43)

(ii) the subalgebra of Hamiltonian vector fields on (E,P ) preserving the foliation F is generated by
the subspace C∞F (E),

HamF (E,P ) = {P ]dH | H ∈ C∞F (E)}. (5.44)

Then, the first Poisson cohomology of the coupling Poisson tensor Π vanishes,

H1
Π(E) = {0}. (5.45)

Proof. First, we observe that condition (5.44) can be reformulated as follows: For every function
f ∈ C∞E with property:

LZf ∈ Casim(E,P ) ∀Z ∈ Γπ-pr(TF), (5.46)

there exists g ∈ Casim(E,P ) such that
dFf = dFg. (5.47)

Indeed, it follows from (5.46), (5.47) that [P ]df, Z] = −P ]dLZf = 0 and P ]df = P ]dH, where
H = f − g ∈ C∞F (E). Now, let us define

Ω̄q(F) :=
{
β ∈ Ωq(F) | iX1 · · · iXqβ ∈ Casim(E,P ) ∀Xi ∈ Γπ-pr(TF)

}
.

In particular, Ω̄0(F) = Casim(E,P ). Using the property that Γπ-pr(TF) ⊂ Poiss(E,P ), it easy to
see that the foliated differential dF leaves invariant the subspaces Ω̄q(F) of Ωq(F) and hence, the
coboundary operator d̄F := dF |Ω̄q(F) is well defined. Then, (Ω̄•(F) := ⊕qΩ̄q(F), d̄F ) is a subcomplex
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of the cochain complex (Ω∗(F),dF ) and there is a natural homomorphism Hq

d̄F
→ Hq

dR(F) between

the corresponding cohomology groups. One can show that conditions (5.46), (5.47) are equivalent to
the following:

dF (Ω̄0(F)) = dF (Ω0(F)) ∩ Ω̄1(F).

This condition means that the natural homomorphism H1
d̄F
→ H1

dR(F) is injective. Therefore, the

hypotheses (i), (ii) of the theorem imply that H1
d̄F

= {0}. Finally, we observe that the cochain

complexes associated with d̄F and := γ0

1,0|N • are isomorphic and hence, H1 is trivial. This, together
with (5.39), proves (5.45). �

To get more insight for the criterion in Theorem 5.15, let us consider the situation when conditions
(5.38), (5.40) are fulfilled and the foliation F is a fibration. In other words, we assume that the leaf
space K := E�F of the foliation is a smooth manifold and the natural projection ν : E → K is a
surjective submersion. So, we have TF = ker dν.

Lemma 5.16. There exists a Poisson structure Υ on K such that the projection ν : E → K is a
Poisson map. Moreover, condition (5.44) is equivalent to the following property: the Hamiltonian
vector field P ]df of every function f ∈ C∞(E) such that

[Z,P ]df ] = 0 ∀Z ∈ Γπ-pr(TF), (5.48)

is ν-related with a Hamiltonian vector field on (K,Υ),

dν ◦ P ]df = Υ]dh ◦ ν, (5.49)

for a certain h ∈ C∞(K).

Proof. Notice that C∞F (E) = ν∗C∞(K). This and condition (5.42) imply that

LZ(P (dν∗κ1, dν
∗κ2)) = P (dLZ(ν∗κ1), dν∗κ2) + P (dν∗κ1, dLZ(ν∗κ2)) = 0

for any Z ∈ Γπ-pr(TF) and κ1, κ2 ∈ C∞(K). It follows that there exists a bivector field Υ ∈ Γ(∧2TK)
which is uniquely determined by

ν∗Υ(dκ1, dκ2) = P (dν∗κ1, dν
∗κ2)

and satisfies the Jacobi identity. Now, condition (5.48) for f ∈ C∞(E) says that P ]df ∈ HamF (E,P )
and hence (5.46) holds. It remains to show the equivalence of conditions (5.47) and (5.49). Indeed,
by (5.48) the Hamiltonian vector field P ]df is ν-related with a vector field w ∈ Γ(TK) which is an
infinitesimal automorphism of Υ. Then, it is easy to see that w is Hamiltonian, w = Υ]dh, h ∈ C∞(K)
if and only if f satisfies (5.47), where g = f − ν∗h ∈ Casim(E,P ). �

Observe that the hypotheses (i) and (ii) of Theorem 5.15 are independent in general. Here is a
particular case in which condition (5.49) is satisfied but (5.38) or (5.43) do not necessarily hold.
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Example 5.17. Let B be a manifold and consider a Poisson manifold K equipped with a Poisson
tensor Υ. Let (E = B ×K,P ) be the product of Poisson manifolds, where B has the trivial Poisson
structure. Let us think of (E,P ) as the total space of a trivial Poisson bundle over B with projection
π = pr1 and the vertical Poisson structure P . It is clear that P and Υ are pr2-related and ker(pr2) ⊂
TE induces a flat Poisson connection for P . Fixing x0 ∈ B, consider the section s : K → E of ν given
by s(y) = (x0, y). Pick a function f ∈ C∞(E) satisfying (5.48) and put h = s∗f . Then, one can easily
verify that (5.49) holds. H

By the same arguments as in the proof of Lemma 5.16, we derive the following cohomological
criterion.

Lemma 5.18. Under hypotheses (5.38), (5.40), in the case when the foliation F is a fibration,
condition (5.44) is equivalent to the triviality of the first Poisson cohomology group of Υ.

Proof. First assume that H1
Υ(K) = {0} and let f ∈ C∞E be such that P ]df preserves the foliation F .

As in the proof of Lemma 5.16, P ]df is ν-related to some infinitesimal automorphism w ∈ Γ(TK) of Υ.
By hypothesis, w = Υ]dh, so P ]d(ν∗h) = P ]df , by the uniqueness of the horizontal lift of w ∈ Γ(TK)
in the fibration ν : E → K with horizontal distribution ker dπ. Therefore, condition (5.44) holds.
Conversely, let w ∈ Γ(TK) be an infinitesimal automorphism of Υ. If W ∈ Γ(TE) is the horizontal
lift of w as described in above, then [W,P ] ∈ Γ(V )∩Γ(ker dν) = {0}, so W ∈ PoissV (E,P ). By (5.38),
W is Hamiltonian. Furthermore, it follows from (5.44) that, W = P ]d(ν∗h) for some h ∈ C∞(K).
Hence, w = Υ]dh. �

Summarizing the above considerations, we arrive at the following result.

Theorem 5.19. Let K
ν←− E

π−→ B be a transversal bi-fibration, that is, ν and π are surjective
submersions and

TE = ker dν⊕ ker dπ. (5.50)

Suppose that ν has connected fibers and satisfies the following compatibility condition with a Poisson
tensor P ∈ Γ(∧2 ker dπ):

Γπ-pr(ker dν) ⊂ Poiss(E,P ). (5.51)

Let F be the regular foliation on E with TF = ker dν and Υ be a unique Poisson structure on K for
which the natural projection ν : E → K is a Poisson map. Suppose we are given a coupling Poisson
structure Π = Π2,0 + Π0,2 on the fiber bundle π : E → B with vertical part Π0,2 = P . Then, the first
Poisson cohomology group of Π on E is trivial if

PoissV (E,P )

Ham(E,P )
= {0}, (5.52)

H1
dR(F) = {0}, (5.53)

H1
Υ(K) = {0}. (5.54)

We end this section with the following remarks about conditions (5.51)-(5.54). First we notice
that if the ν-fibers are simply connected, then condition (5.53) holds (see [17, Subsection 7.4]).

Moreover, by (5.50), the restriction of the surjective submersion ν to each π-fiber ν|π−1(x) :
(π−1(x), Px)→ (K,Υ) is a local Poisson diffeomorphism. We claim that conditions (5.51) and (5.52)
imply (5.54) if the restriction ν|E0 : E0 → K is bijective for a single fiber E0 := π−1(x0). This fact is
based on the following observation: the lifting W ∈ Γν- pr(V ) of every element w ∈ Poiss(K,Υ), given
as in Lemma 5.18, is a Poisson vector field on (E,P ).
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5.5 Isotropy algebras of compact semisimple type

The triviality condition (5.38) is realized in the following case. Let (E
π→ B,P ) be a locally trivial

Lie-Poisson bundle whose typical fiber is the co-algebra (g∗,Λ) of a semisimple Lie algebra g of compact
type. Recall that this condition means that the Killing form is negative definite or, equivalently, that
the connected and simply connected Lie group integrating g is compact. Due to [12, Theorem 4.1] (see,
also [50, Theorem 1.3.1]), we have H1

Λ(g∗) = 0. Moreover, there exist the linear homotopy operators
for the Poisson complex of (g∗, δΛ) of degree 1:

C∞(g∗)
h0←− Γ(Tg∗)

h1←− Γ(∧2Tg∗),

δΛ ◦ h0 + h1 ◦ δΛ = IdΓ(Tg∗) .

Observe that this fact remains true if instead of g∗ we take an open ball (with respect to the
invariant inner product in g∗) centered at the origin. The existence of the homotopy operators imply
the triviality of the parametrized first Poisson cohomology groups of the Lie-Poisson structure Λ.
Combining this fact with the partition unity argument, we conclude that the first vertical cohomology
group of P is also trivial.

Remark 5.20. The triviality property of the parametrized first cohomology groups appears also in
the context of the tame Poisson structures, introduced in [48].

Now, as an illustration of Theorem 5.19, let us consider the following situation. Let M = B × Rk
be the product of a compact connected symplectic manifold B and the k-dimensional Euclidean space
Rk = {x = (x1, . . . , xk)}. Let us view M as the total space of the trivial vector bundle over B.
Suppose we are given a Poisson tensor Π on M such that the zero section B×{0} is a symplectic leaf
of Π. Assume that

cαβσ :=
∂

∂xσ
Π(dxα, dxβ)

∣∣∣∣
x=0

= const on B. (5.55)

Then, cαβσ are the structure constants of a Lie algebra g and condition (5.55) means that the isotropy
bundle of the leaf B × {0} is just the trivial Lie bundle B × g. Observe that after a change of
coordinates on the fiber, condition (5.55) still holds. Combining Theorem 5.19 with Conn’s results
[12], we establish the following criterion which implies Theorem 5.22.

Proposition 5.21. If B is simply connected and compact and the isotropy algebra g is semisimple
of compact type, then there exists an open neighborhood E of B × {0} in M = B × Rk such that
H1

Π(E) = {0}.

Proof. We have to verify that the hypotheses of the proposition imply conditions (5.52)-(5.54). First,
we observe that Π = Π2,0 + Π0,2 is a coupling Poisson structure in a neighborhood E of B × {0} in
M = B × Rk which is viewed as the total space of the fiber bundle π := pr1 |E over B. By (5.55),
the linearization of the vertical Poisson structure P = Π0,2 at B × {0} gives

P (1) =
1

2
cαβσ xσ

∂

∂xα
∧ ∂

∂xβ
. (5.56)

By the linearization Conn theorem, for every b ∈ B, the Poisson structure Pb on the fiber Eb around 0
is isomorphic to the Lie-Poisson structure Λ on g∗. Then, one can show [78] that the neighborhood E
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can be chosen in such a way that there exists a fiber preserving diffeomorphism g : E → g(E) identical
on B and g∗P = P (1). So, we obtain the coupling Poisson tensor g∗Π = g∗Π2,0 + P (1) defined on the
neighborhood g(E) of B. Then, as we mentioned above, condition (5.52) holds for P (1). Moreover,
by the compactness of B, one can arrange the neighborhood E to have g(E) = B×K, where K is an
open ball centered at 0. Then, condition (5.54) holds for Υ = Λ, H1

Λ(K) = {0}. Finally, by condition
(5.55), there exists a flat Poisson connection γ0 on (B×K,P (1)) associated with the horizontal foliation
F with leaves B × {x}, x ∈ K. Then, the foliated de Rham cohomology of dF is the same thing as
the de Rham cohomology of the forms in B depending smoothly on x ∈ K as a parameter. Since B
is simply connected, according to results in [17, 29], we conclude that H1

dR(F) = {0}. �

Theorem 5.22. Let S ⊂ M be an embedded symplectic leaf of the Poisson manifold (M,Ψ) such
that the normal bundle of S (viewing as a Lie-Poisson bundle) is trivial. Assume that the isotropy
algebra of the symplectic leaf S is a semisimple Lie algebra of compact type. If S is compact and simply
connected, then there exists a tubular neighborhood N of S in M such that every Poisson vector field
of Ψ is Hamiltonian on N .

Example 5.23. Consider the case when E := S2 × R3, where R3 = {x = (x1, x2, x3)}, and the base
B := S2 ⊂ R3 is the unit 2-sphere equipped with the area form ω = dp ∧ dq. Here, the Darboux
coordinates p, q can be defined as the azimuthal angle p = ϕ and the height function q = h on the
sphere. Then, given a vector valued 1-form % on B,

% = %(1)(p, q, x)dp+ %(2)(p, q, x)dq,

with %(1), %(2) ∈ R3, and a constant c ∈ R, one can define the following Poisson tensor on E [78]:

Π%,c = 1
2(1−x·∆%+c‖x‖2)

(
∂

∂p
+ (x× %(1)) · ∂

∂x

)
∧
(
∂

∂q
+ (x× %(2)) · ∂

∂x

)
+

1

2
εαβγx

γ ∂

∂xα
∧ ∂

∂xβ
,

where ∆% := ∂%(2)

∂p −
∂%(1)

∂q +%(1)×%(1). In this case, S2×{0} is a simply connected, compact symplectic
leaf of Π%,c whose isotropy Lie algebra is g = so(3). Therefore, by Proposition 5.21 we conclude that
the first cohomology of Π%,c vanishes for arbitrary data (%, c). In particular, this is true for the product
Poisson structure Π0,0 on S2 × so∗(3). H

5.6 Projectability of Casimir functions

Let (E
π→ B,P ) be again a Poisson bundle and Π a coupling Poisson structure on E with associated

geometric data (P, γ, σ). Let us consider another extreme situation, assuming that every Casimir
function of the vertical Poisson structure P is projectable in the sense that

Casim(E,P ) = π∗C∞(B). (5.57)

So, this means that P ]dF = 0 if and only if F = π∗f for a certain f ∈ C∞(B).

Example 5.24. Let

Λ =
∂

∂x1
∧
(
x2

∂

∂x2
+ x3

∂

∂x3

)
(5.58)
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be the Lie-Poisson structure on the co-algebra g∗ = R3 of the 3-dimensional Lie algebra

[e1, e2] = e2, [e2, e3] = 0, [e3, e1] = −e3. (5.59)

In this case, the foliation of R3 by the symplectic leaves (the co-adjoint orbits) is an open book type
foliation. As a consequence, the corresponding Lie-Poisson structure Λ on g∗ does not admit any
global nontrivial Casimir function on R3, that is, Casim(Λ,R3) = R. One can show that the first
cohomology group of the Lie-Poisson structure Λ in (5.58) is generated by the Poisson vector fields

Z1 =
∂

∂x1
, Z2 = x2

∂

∂x2
− x3

∂

∂x3
, Z3 = x3

∂

∂x2
, Z4 = x2

∂

∂x3
(5.60)

and, hence, isomorphic to R× sl(2,R) as Lie algebras. H

It follows that condition (5.57) holds for any locally trivial Lie-Poisson bundle (π : E → B,P ) over
B whose typical fiber is just R3 equipped with linear Poisson bracket (5.58).

Remark 5.25. The fact that H1
Λ(R3) is generated by the basis (5.60) can be stated by direct

computations. It is of interest to note that in the regular domain R3\{x1-axis} ∼= R2×S1, the Poisson
structure (5.58) has nontrivial Casimir functions and, as a consequence, the first Poisson cohomology
group is infinite dimensional and isomorphic to C∞(S1) [25]. More examples of explicit computations
of the first cohomology of low-dimensional Poisson manifolds with singularities can be also found in
[49, 54].

Now, we observe that the condition (5.57) implies that the cochain complex (N •, γ
) is isomorphic

to the de Rham complex (Ω∗(B),dB) on the base B. Therefore, in this case we have Hk
γ
∼= Hk

dR(B)
∀k ≥ 0.

Proposition 5.26. Let Π be a coupling Poisson structure on the fiber bundle E
π→ B with associated

geometric data (P, γ, σ). If, in addition to (5.57), the second de Rham cohomology of the base B is
trivial,

H2
dR(B) = {0}, (5.61)

then
Poiss(E,Π) ∼= Ω1

cl(B)⊕Aγ , (5.62)

and the first Poisson cohomology of Π is of the form

H1
Π(E) ∼= H1

dR(B)⊕ Aγ

Ham(E,P )
. (5.63)

Here, Aγ is a Lie subalgebra of vertical Poisson vector fields of P defined in (5.25).

Proof. If (5.61) holds, then H2

1,0
= {0}. Therefore, by definition (5.29), we get ker ργ = Aγ . Hence,

the decompositions (5.34) and (5.36) coincide with (5.62) and (5.63), respectively. �

As a consequence of Proposition 5.26, hypotheses (5.57) and (5.61) imply that the properties of the
first Poisson cohomology of Π are controlled by the γ-dependent Lie algebra Aγ . In fact, the algebra
Aγ depends on an equivalence class of the Poisson connection γ on (E

π→ B,P ). Indeed, suppose we
have another Poisson connection γ̃ on (E

π→ B,P ) which is equivalent to γ in following sense: there
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exists a 1-form % ∈ Ω1,0
B (E) such that horγ̃(u) = horγ(u)+P ]d%(u), for every u ∈ Γ(TB). Then, γ̃ ∼ γ

implies Aγ̃ = Aγ .
It is useful also to single out the Lie subalgebra of Aγ consisting of all vertical Poisson vector fields

on (E,P ) that preserve the horizontal subbundle of γ,

Aγ0 := {Y ∈ PoissV (E,P ) | [horγ(u), Y ] = 0 ∀u ∈ Γ(TB)}.

Then, taking into account (5.57), we get

Ham0(E,P ) := Aγ0 ∩Ham(E,P ) = {P ]dF | Lhorγ(u)F ∈ π∗C∞(B) ∀u ∈ Γ(TB)}.

An interesting situation occurs when

Aγ ∼=
Aγ0

Ham0(E,P )
⊕Ham(E,P ). (5.64)

In this case,

H1
Π(E) ∼= H1

dR(B)⊕ Aγ0
Ham0(E,P )

. (5.65)

Lemma 5.27. Condition (5.64) is equivalent to the following: every Y ∈ Aγ admits the decomposition

Y = P ]dG+ Y0, (5.66)

where Y0 ∈ Aγ0 and G ∈ C∞(E). Furthermore, given β ∈ Ω1(B)⊗C∞(B)C
∞(E) in (5.26), there exists

c ∈ Ω1(B) such that
γ
1,0G = β − c⊗ 1. (5.67)

Next, let us consider the following particular case. Let E = B×K be the product of a manifold B
equipped with zero Poisson structure and a Poisson manifold (K,Υ). Let P be the product Poisson
structure on E. Then, we have the trivial Poisson bundle (E = B × K,P ) over B with projection
πB = pr1 and the typical fiber (K,Υ). Consider the trivial Poisson connection γ0 on E associated
with the canonical horizontal distribution ker(dπK), where πK = pr2.

Proposition 5.28. Let Π be a compatible coupling Poisson tensor on the trivial Poisson bundle
(E = B ×K,P ) in the sense that Π0,2 = P and the associated Poisson connection γ is equivalent to
the trivial one, γ ∼ γ0. Assume that B is connected,

Casim(K,Υ) = R, (5.68)

condition (5.61) holds, and Aγ0
admits splitting (5.64). Then,

H1
Π(E) ∼= H1

dR(B)⊕H1
Υ(K). (5.69)

Proof. By the connectedness of B, it is easy to see that Aγ
0

0
∼= Poiss(K,Υ), where the isomorphism is

given by the horizontal lift in E
πK→ K with horizontal distribution ker dπB. Moreover, we claim that

Ham0(E,P ) ∼= Ham(K,Υ). Indeed, pick a Y = P ]dF ∈ Ham0(E,P ). Since hypothesis (5.68) implies
(5.57), we conclude that L

horγ
0
(u)
F ∈ π∗BC

∞(B) for any u ∈ Γ(TB). Then, fixing y0 ∈ K, we see

that the function F̃ ∈ C∞(E) given by F̃ (x, y) = F (x, y) − F (x, y0) for x ∈ B, y ∈ K is of the form
F̃ = π∗Kf for a certain f ∈ C∞(K). Consequently, Y is πK-related with the Hamiltonian vector field
Υ]df . �
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Example 5.29. Consider the trivial Poisson bundle (π = pr1 : E = B × R3, P ), where the base
B = R1×S1 = {(t, ϕmod 2π)} is the 2-cylinder and the typical fiber (R3,Λ) is given by the Lie-Poisson
structure (5.58). We already know that in this case, the projectability condition (5.57) holds. It is
clear that (5.61) is also satisfied. By analyzing equations (5.26), (5.66), (5.67), one can show that
decomposition (5.64) is true for Aγ0

. In this case, an arbitrary compatible coupling Poisson structure
on the trivial Poisson bundle E such that γ ∼ γ0 has the form

Π% = 1
2(1−ψ(x)·∆%)

(
∂

∂t
+ (ψ × %(1)) · ∂

∂x

)
∧
(
∂

∂ϕ
+ (ψ × %(2)) · ∂

∂x

)
+

∂

∂x1
∧
(
x2

∂

∂x2
+ x3

∂

∂x3

)
,

where ψ = (0,−x3, x2), % = %(1)(t, ϕ, x)dt+ %(2)(t, ϕ, x)dϕ is an arbitrary horizontal 1-form on E and

∆% :=
∂%(2)

∂t
− ∂%(1)

∂ϕ
+ %(1) × %(2)

is the Hamiltonian of the curvature of γ [78]. Applying Proposition 5.28 to Π% and taking into account
Example 5.24, we get

H1
Π%(E) ∼= R⊕ R4.

H

5.7 First cohomology of coupling Dirac structures

An example. Let (M,ω) be a presymplectic manifold and (N,Ψ) the Poisson manifold given by
N = R2

y, Ψ = ‖y‖2 ∂
∂y1
∧ ∂
∂y2

. Consider the product Dirac structure D on M ×N . Then, M × {0} is a

presymplectic leaf of D and we can think of M×N prM→ M as a coupling neighborhood. More precisely,
the vertical distribution is V := ker(prM )∗, and the associated geometric data (P, γ, σ) consists of the
flat connection γ := (prN )∗, given by the differential of the projection prN : M×N → N ; the pullback
σ := pr∗N ω of the presymplectic structure on M ; and the unique vertical Poisson bivector field P on
M ×N which is prN -related to Ψ, P = ‖y‖2 ∂

∂y1
∧ ∂
∂y2

on M ×N .
First we note that (N,Ψ) has two symplectic leaves: the origin (0, 0), which is zero-dimensional,

and the complement Nreg := R2 − {(0, 0)}. Then, each Casimir funcion of (N,Ψ) is constant,
Casim(N,Ψ) ∼= R. This implies that Casim(M ×N,P ) = pr∗M C∞(M) and

H0(M ×N,D) ∼= H0
dR(M).

Observe that in this case, the de Rham - Casimir complex (N •, ) is isomorphic to the de Rham
complex (Γ(∧•T ∗M),d) of M . In particular, H1(N •, ) ∼= H1

dR(M). We now proceed to describe
ker(ρ1 : A1 → H2(N •, )). Let Y = Y1

∂
∂y1

+ Y2
∂
∂y2
∈ Γ(V ) be a vertical vector field. Then, LY P = 0

if and only if
y1Y1 + y2Y2 = 1

2‖y‖
2 divy(Y ). (5.70)

Here, divy(Y ) := ∂Y1
∂y1

+ ∂Y2
∂y2

denotes the divergence of Y with respect to the fiber-wise volume form
d y1 ∧ d y2. In particular, the fiber-wise Euler and modular vector fields

Z1 := y1
∂
∂y1

+ y2
∂
∂y2

and Z2 := −y2
∂
∂y1

+ y1
∂
∂y2

(5.71)

are Poisson vector fields of P , respectively.
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Proposition 5.30. Consider the Poisson manifold (M × N,P ) given as in above. Let Z1, Z2 be
defined as in (5.71), and Y ∈ Γ(V ). Then, Y ∈ Poiss(M × N,P ) if and only if Y = a1Z1 + a2Z2

for unique a1, a2 ∈ C∞(M) satisfying LZ1a1 + LZ2a2 = 0. Additionally, Y is Hamiltonian if and
only if a1 and a2 vanish along the zero section M × {0}. In this case, a Hamiltonian is given by
h(x, y) :=

∫∞
0 a2(x, e−ty) d t. Hence, the first vertical Poisson cohomology of the Poisson bundle

(M ×N prM→ M,P ) is

H1(M ×N,V, P ) = C∞(M).[Z1]⊕ C∞(M).[Z2].

Proof. Observe from (5.70) that, for smooth functions a1, a2 ∈ C∞(M ×N),

Y = a1Z1 + a2Z2 (5.72)

is an infinitesimal Poisson automorphism of P if and only if LZ1 a1 + LZ2 a2 = 0. We claim that every
vertical infinitesimal Poisson automorphism of P is of this form. Indeed, fix Y ∈ Poiss(M ×N,P ) ∩
Γ(V ). Since Z1, Z2 are linearly independent on M ×Nreg, there exist b1, b2 ∈ C∞(M ×Nreg) such that
Y |M×Nreg = b1Z1 + b2Z2. Explicitly, b1 := 1

‖y‖2 (y1Y1 + y2Y2) and b2 := 1
‖y‖2 (−y2Y1 + y1Y2). We just

need to show that b1 and b2 can be extended to some smooth functions a1 and a2 on M×N . By (5.70),
b1 can be extended to the smooth function a1 := 1

2 divy(Y ) on M×N . Moreover, Y2−a1y2 is a smooth
function on M ×N such that Y2− a1y2|M×Nreg = b2y1. This implies that Y2− a1y2 vanishes along the
level set y1 = 0 of M ×N . Hence, there exists a2 ∈ C∞(M ×N) such that Y2 − a1y2 = a2y1. Hence,
a2 is a smooth function on M ×N whose restriction to M ×Nreg is b2. Finally, since such extensions
are clearly unique, we conclude that every Poisson vector field Y admits a unique representation of
the form (5.72), with a1, a2 ∈ C∞(M ×N) satisfying LZ1 a1 + LZ2 a2 = 0.

Now, pick a Hamiltonian vector field Y = P ] dh, h ∈ C∞(M × N). By straightforward
computations, the smooth functions a1 and a2 in (5.72) are given in this case by

a1 = −LZ2 h and a2 = LZ1 h. (5.73)

In particular, a1 and a2 vanish on the symplectic leaf M × {0}. We now see that the converse is
also true: If Y = a1Z1 + a2Z2 ∈ Poiss(M × N,P ) ∩ Γ(V ) is such that a1(x, 0) = a2(x, 0) = 0, then
Y ∈ Ham(M × N,P ). To see this, pick Y = a1Z1 + a2Z2 such that LZ1 a1 + LZ2 a2 = 0 with a1, a2

vanishing on M × {0}. Define h : M ×N → R by

h(x, y) :=

∫ ∞
0

a2(x, e−ty) d t. (5.74)

Then, h ∈ C∞(M ×N) and clearly satisfies LZ1 h = a2. Moreover,

LZ1 a1 = −LZ2 a2 = −LZ2 LZ1 h = −LZ1 LZ2 h,

so LZ1(a1 + LZ2 h) = 0, which implies that a1 + LZ2 h is constant along the prM -fibers. By hypothesis,
both a1 and LZ2 h vanish on M ×{0}. Hence, a1 + LZ2 h = 0. Therefore, h is a solution of (5.73) and
so is a Hamiltonian for Y . �

We now describe the subspace A1. For Y ∈ Poiss(M × N,P ) ∩ Γ(V ), we have that Y ∈ A1

if and only if there exists a horizontal 1-form α ∈ Γ(V ◦) such that γ
1,0Y + P

0,1α = 0. Since γ is
the trivial (flat) connection, the horizontal prM -projectable vector fields u are locally written in the
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form u = ui
∂
∂xi

. Therefore, the relation between Y and α reads [u, Y ] = −P ] d[α(u)]. Since Y is a
vertical infinitesimal automorphism of P , there exists a1, a2 ∈ C∞(M × N) such that (5.72) holds
and Y = a1Z1 + a2Z2. Then, [u, Y ] = (Lu a1)Z1 + (Lu a2)Z2. Because of Proposition 5.30, [u, Y ] is
Hamiltonian if and only if a1 and a2 are constant along the zero section M × {0}. Hence,

A1

Ham(M×N,P ) = R.[Z1]⊕ R.[Z2].

Observe also that the Hamiltonian function α(u) of −[u, Y ] can be given by the formula

α(u(x, y)) = −
∫ ∞

0
(Lu a2)(x, e−ty) d t.

Furthermore, we have α = − γ
1,0h, where h is given as in (5.74). This follows from the identity

(Lu h)(x, y) =

∫ ∞
0

(Lu a2)(x, e−ty) d t ∀u.

Therefore, the flatness of γ implies γ
1,0α = −( γ

1,0)2h = −LRγ h = 0. Finally, we have σ
2,−1Y =

LY pr∗M ω = 0. In consequence, ρ1(Y ) = 0 for all Y ∈ A1, so ker ρ1 = A1.

Theorem 5.31. The first cohomology of the Dirac manifold M × N given by the product of a
presymplectic manifold (M,ω) with the Poisson manifold (N = R2

y,Ψ = ‖y‖2 ∂
∂y1
∧ ∂
∂y2

) is

H1(M ×N,D) ∼= H1
dR(M)⊕H1(N,Ψ).

Proof. Because of our above discussion, H1(N •, ) ∼= H1
dR(M), and ker ρ1

Ham(M×N,P ) = R.[Z1] ⊕ R.[Z2].
Therefore,

H1(M ×N,D) ∼= H1
dR(M)⊕ (R.[Z1]⊕ R.[Z2]).

Finally, the fact that H1(N,Ψ) ∼= R.[Z1]⊕ R.[Z2] follows from Proposition 5.30 with M consisting of
a single point (see also [49]). �

5.8 Detailing the open book foliation case

The main goal of this section is to present a general scheme which allows to compute the first
Poisson cohomology group of certain linear Poisson structures in Rn. More precisely, we aim to
study coordinate conditions for a vector field to be an infinitesimal Poisson automorphism.

General setup. Let X := X2
∂
∂x2

+ · · · + Xn
∂
∂xn

a flat vector field in Rn, i.e., the coefficients
X2, . . . , Xn does not depend on the variable x1:

∂Xj

∂x1
= 0, ∀j = 2, . . . , n.

Now, consider the bivector field

Π :=
∂

∂x1
∧X.
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Since X is a flat vector field, [X, ∂
∂x1

] = 0. Therefore,

[Π,Π] = [Π, ∂
∂x1

] ∧X − ∂
∂x1
∧ [Π, X] = ∂

∂x1
∧ [X, ∂

∂x1
] ∧X − ∂

∂x1
∧ [ ∂

∂x1
, X] ∧X = 0,

proving that Π is a linear Poisson structure in Rn. Let us describe its infinitesimal Poisson
automorphisms.

Let Z = Z1
∂
∂x1

+ · · ·+ Zn
∂
∂xn

be a Poisson vector field in the Poisson manifold (Rn,Π). Then,

0 = [Z,Π] = [Z, ∂
∂x1

] ∧X + ∂
∂x1
∧ [Z,X]

=

[
Zi

∂

∂xi
,
∂

∂x1

]
∧
(
Xj

∂

∂xj

)
+

∂

∂x1
∧
[
Zi

∂

∂xi
, Xj

∂

∂xj

]
= −Xj

∂Zi
∂x1

∂

∂xi
∧ ∂

∂xj
+

∂

∂x1
∧
(
Zi
∂Xj

∂xi

∂

∂xj
−Xj

∂Zi
∂xj

∂

∂xi

)
=

(
Xl
∂Zk
∂x1
−Xk

∂Zl
∂x1

)
∂

∂xl
∧ ∂

∂xk

+

(
−Xk

∂Z1

∂x1
+ Zj

∂Xk

∂xj
−Xj

∂Zk
∂xj

)
∂

∂x1
∧ ∂

∂xk

where i = 1, . . . , n, j = 2, . . . , n, l < k. Therefore, the vector field Z is Poisson for Π if and only if

Xl
∂Zk
∂x1
−Xk

∂Zl
∂x1

= 0, l, k = 2, . . . , n, (5.75)

−Xk
∂Z1

∂x1
+ Zj

∂Xk

∂xj
= Xj

∂Zk
∂xj

k = 2, . . . , n. (5.76)

Now, define ∆lk := XlZk −XkZl. Since ∂Xi
∂x1

= 0, equation (5.75) is equivalent to

∂∆lk

∂x1
= 0.

On the other hand, by applying (5.76) on the third step,

LX ∆lk = LX XlZk − LX XkZl +Xl LX Zk −Xk LX Zl

= LX XlZk − LX XkZl +Xl

(
Xj

∂Zk
∂xj

)
−Xk

(
Xj

∂Zl
∂xj

)
= LX XlZk − LX XkZl +Xl

(
−Xk

∂Z1

∂x1
+ Zj

∂Xk

∂xj

)
−Xk

(
−Xl

∂Z1

∂x1
+ Zj

∂Xl

∂xj

)
= LX XlZk − LX XkZl +XlZj

∂Xk

∂xj
−XkZj

∂Xl

∂xj

= ZkXj
∂Xl

∂xj
− ZlXj

∂Xk

∂xj
+XlZj

∂Xk

∂xj
−XkZj

∂Xl

∂xj

= ∆lj
∂Xk

∂xj
+ ∆jk

∂Xl

∂xj
.

Thus, the functions ∆lk satisfy the following system of
(
n−1

2

)
PDE,

LX ∆lk = ∆lj
∂Xk

∂xj
+ ∆jk

∂Xl

∂xj
, (5.77)

where the sum is taken over all indexes j = 2, . . . , n and ∆lk ∈ C∞Rn .
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Diagonal vector fields an their associated PDE’s. Let X = d2x2
∂
∂x2

+ . . .+dnxn
∂
∂xn

be a linear
diagonal vector field, with di > 0. Then, the system (5.77) takes the form

LX ∆lk = (dk + dl)∆lk,

which is disengaged. Let us study the solutions for ∆lk ∈ C∞Rn−1 , where Rn−1 = {(x2, . . . , xn) | xi ∈ R}.

Lemma 5.32. Consider the PDE

d2x2
∂u

∂x2
+ . . .+ dnxn

∂u

∂xn
= ru,

where r ∈ R is constant.

1. If r = 0, then the only solutions are constants.

2. If u is a solution for the constant r, then ∂u
∂xj

is a solution for the constant r − dj.

Proof. Fix any p = (p2, . . . , pn) ∈ U and define

α(t) := (ed2tp2, . . . , e
dntpn)

Then by the chain rule

d

dt
u(α(t)) =

n∑
i=2

∂u

∂xi
(α(t))

d

dt
(editpi) =

n∑
i=2

∂u

∂xi
(α(t)) · (dieditpi)

=
n∑
i=2

dixi(α(t))
∂u

∂xi
(α(t)) = ru(α(t)).

Therefore, u(α(t)) = u(α(0))ert = u(p)ert.

1. If r = 0, then u is constant along the trajectory α(t). Since di > 0 for all i = 2, . . . , n, then

u(0) = lim
t→−∞

u(α(t)) = u(α(0)) = u(p),

so u is constant since p ∈ Rn−1 is arbitrary.

2. Since the partial derivatives commute,

r
∂u

∂xj
=

∂

∂xj

n∑
i=1

dixi
∂u

∂xi
= dj

∂u

∂xj
+

n∑
i=1

dixi
∂

∂xi

∂u

∂xj
,

which implies the desired result.

�

Now take d2 = . . . = dn = 1. In this case, we get

X = x2
∂

∂x2
+ . . .+ xn

∂

∂xn
,

which is the Euler vector field E in the variables x2, . . . , xn. In this case, ∆lk must be a solution of

LE ∆lk = 2∆lk. (5.78)
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Lemma 5.33. Let u : U ⊂ Rn → R and k ∈ N ∪ {0}. Consider the Partial Differential Equation

n∑
i=1

xi
∂u

∂xi
= ku. (5.79)

1. The solutions of (5.79) are homogenous functions of degree k.

2. If u is a solution of (5.79), then v = ∂u
∂xj

is a solution of

n∑
i=1

xi
∂v

∂xi
= (k − 1)v.

3. If U = Rn, then the solutions of (5.79) are the homogenous polynomials of degree k.

Proof. By repeating arguments in Lemma 5.32, the solutions of the equation in (5.79) must satisfy
u(α(t)) = u(p)ekt, where

α(t) := etp = (etp2, . . . , e
tpn).

1. Note that for each λ > 0, u(λp) = u(α(ln(λ))) = u(p)ek ln(λ) = λku(p), so u is an homogenous
function of degree k. Conversely, if u is an homogeneous function of degree k, then the map
f : R→ R defined by f(t) = u(etp)− ektu(p) is identically zero. Thus,

0 =
df

dt
=

n∑
i=1

∂u

∂xi
(etp)

d

dt
etpi − kektu(p).

Evaluating at t = 0, we get the desired result.

2. This follows from Lemma 5.32.

3. We will prove this result by induction on the degree of homogeneity. If k = 0, Lemma 5.32
implies that u is constant, i.e., a polynomial of degree zero. Suppose that the only solutions of
(5.79) are polynomials of degree k. If u is a solution of

n∑
i=1

xi
∂u

∂xi
= (k + 1)u,

then, by the previous part, each of their partial derivatives ∂u
∂xj

are a solution of (5.79), i.e., are

homogenous polynomials of degree k. This implies that u is a homogenous polynomial of degree
k + 1. By induction, we complete the proof.

�

Lemma 5.34. The Partial Differential Equation

x2
∂u

∂x2
+ · · ·+ xn

∂u

∂xn
= k (5.80)

has a solution defined on all Rn−1 if and only if k = 0.
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Proof. Clearly, the equation (5.80) has a solution if k = 0. Conversely, evaluating both sides of (5.80)
at p = 0, we get

k = x2|0
∂u

∂x2
(0) + · · ·+ xn|0

∂u

∂xn
(0) = 0.

�

Lemma 5.35. Let F ∈ C∞Rn−1 a smooth function. The Partial Differential Equation

x2
∂u

∂x2
+ . . .+ xn

∂u

∂xn
= F (x) (5.81)

has a solution if and only if and only if F (0) = 0. In this case, the solution is unique up to adding
constants.

Proof. For a fixed x ∈ Rn−1, define f : R→ R by

f(t) =

{
F (tx)−F (0)

t if t 6= 0

F ′(0) if t = 0.

Since F is smooth, so it is f . Hence, u : R2 → R defined by

u(x) =

∫ 1

0

F (tx)− F (0)

t
dt

is smooth. Furthermore,

∂u

∂xi
=

∫ 1

0

∂

∂xi

F (tx)− F (0)

t
dt =

∫ 1

0

∂F

∂xi
(tx)dt.

Hence,

x2
∂u

∂x2
+ . . .+ xn

∂u

∂xn
=

∫ 1

0

(
x2
∂F

∂x2
(tx) + . . .+ xn

∂F

∂xn
(tx)

)
dt =

∫ 1

0

d

dt
F (tx)dt

= F (1 · x)− F (0 · x) = F (x)− F (0).

We have shown that there exist a solution for the function F (x) − F (0). Hence, in order to have a
solution for (5.81), it must exist a solution for the constant function k = F (0). By Lemma 5.34, this
occurs if and only if F (0) = 0. �

Remark 5.36. Note that the previous construction allow us to establish the following result: If
f : R→ R, then

f(x)− f(0) = x
d

dx

∫ 1

0

f(tx)

t
dt.
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Splitting of the Infinitesimal Automorphisms. Recall that in order to parameterize all the
Poisson vector fields for the Poisson manifold (Rn,Π = ∂

∂x1
∧ E), we have to establish conditions for

Zk and Zl in order to

xlZk − xkZl

be a solution of (5.78).

Lemma 5.37. Fix k, l = 2, . . . , n, and consider the map M : C∞Rn−1 × C∞Rn−1 → C∞Rn−1 given by

M(Z,W ) := xlZ − xkW.

Then,

1. M : C∞Rn ⊕ C∞Rn → C∞Rn is C∞Rn-linear.

2. M(Z,W ) = 0 if and only if there exists fkl ∈ C∞Rn such that Z = xkfkl and W = xlfkl.

3. If M(g, h) = ∆, then every solution of the equation M(Z,W ) = ∆ has the form Z = g + xlfkl,
W = h+ xkfkl.

Proof. Property 1 is clear, and it is easy to show that property 3 follows from 1 and 2. It remains to
show property 2. Note that M(Z,W ) = 0 if and only if

xkZ = xlW.

For each point p in the hyperplane xk = 0, the right hand side of the last equation vanishes. Therefore,
for each point p in the hyperplane xk = 0 and not belonging to the line xk = xl = 0, it must be
Z(p) = 0. By continuity, Z(p) = 0 for all p with pk = 0. Similarly, W (p) = 0 if pl = 0. By Remark
5.36, there exist smooth functions fk, fl ∈ C∞Rn−1 such that

Z = xkfk, W = xlfl.

Then,

xkxl(fk − fl) = xlZ − xkW = 0,

which means that fk = fl in every point with xkxl 6= 0. Since this set is dense in Rn, by continuity
we conclude that fk = fl in all Rn. �

Now, we will prove the following result for Poisson vector fields:

Proposition 5.38. Let Z be a Poisson vector field in (Rn,Π), where Π = ∂
∂x1
∧ E, where E is the

Euler vector field in variables x2, . . . , xn. There exist unique z, f ∈ C∞Rn and aij ∈ R, i, j = 2, . . . , n
such that ann = 0 and

Z = z
∂

∂x1
+ fE + (aijxi)

∂

∂xj
. (5.82)

Furthermore, z, f ∈ C∞Rn satisfy

LE f +
∂z

∂x1
= 0. (5.83)

Conversely, any vector field satisfying (5.82) and (5.83) is Poisson for Π.
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Lemma 5.39. If a vector field Z has the form (5.82), then such representation is unique.

Proof. Assume that there exist z, f ∈ C∞Rn and aij ∈ R, i, j = 2, . . . , n such that ann = 0 and

z
∂

∂x1
+ fE + (aijxi)

∂

∂xj
= 0.

Then z = 0 and aijxi + fxj = 0 for each j = 2, . . . , n. We will show that f and each aij are zero.
Fix i 6= j and evaluate aijxi + fxj = 0 in xi = 1 and xk = 0, for all k 6= i, leading to aij = 0. This
implies that (ajj + f)xj = 0 for each j = 2, . . . , n− 1 and fxn = 0. This means that f is zero outside
the hyperplane xn = 0. Since f is continuous, it follows that f = 0. Substituting in (ajj + f)xj = 0
with xj = 1, we get ajj = 0. It follows that if a vector field can be represented as in above, then its
representation is unique, as desired. �

Proof of Proposition 5.38. Let Z = Zj
∂
∂xj

the coordinate expression of a Poisson vector field Z.

Denote ∆lk := xlZk − xkZl. Then, equation (5.75) reads ∂∆lk
∂x1

= 0, which means that ∆lk only
depends on the variables x2, . . . , xn. Now note that equations (5.76) imply

LE ∆lk = 2∆lk.

Therefore, ∆lk must be a C∞Rn-homogenous function of degree 2, i.e., ∆lk = xlZk − xkZl is an
homogenous polynomial of degree 2, due to Lemma 5.33. A particular solution for Zk, Zl is to take
Zk and Zl linear. Then, by Lemma 5.37, in general there exist flk ∈ C∞R3 such that

Zk − xkflk, Zl − xlflk
are linear functions. Furthermore, it can be shown that, for a fixed k, the functions fkl and fkj differ
by a constant. Thus, the above linear functions can be chosen in order to have a fixed function flk = f
for any k, l. Also, we can modify this function f in order to have Zn = an2x2 + . . .+an,n−1xn−1 +fxn.
Taking z = Z1, we get that

Z = z
∂

∂x1
+ fE + (aijxi)

∂

∂xj

for some constants aij , with an,n = 0. Finally, a substitution of Zk in (5.76) yields

−xk
∂z

∂x1
+ Zk = −Xk

∂Z1

∂x1
+ Zj

∂Xk

∂xj
= Xj

∂Zk
∂xj

= Zk + xk LE f.

This implies that LE f + ∂Z1
∂x1

= 0 outside the plane xk = 0, and hence, in all Rn, completing the
proof. �

First Poisson cohomology group

Lemma 5.40. If Z is a Poisson vector field, then Z(x1, 0, 0) = Z(0, 0, 0).

Proof. Since Z is a Poisson vector field, it can be represented as

Z = z
∂

∂x1
+ fE + (aijxi)

∂

∂xj
,

where LE f + ∂z
∂x1

= 0. Since E is a linear vector field in the variables x2, . . . , xn,

(LE f)(p1, 0, . . . , 0) = 0,

so ∂z
∂x1

(p1, 0, . . . , 0) = 0 for all p1 ∈ R. Therefore, z must be constant along the x1-axis. �
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Calculus of the cohomology

Note that in the representation (5.82) for a Poisson vector field Z, the tangent part (in the regular
domain) is z ∂

∂x1
+ fE and the transversal part is the linear vector field (aijxi)

∂
∂xj

. Thus, in order to

be Z a Hamiltonian vector field, we must have aij = 0. Furthermore, we will show that if z(0) = 0,
then Z is Hamiltonian.

Theorem 5.41. Let Z be a Poisson vector field in the Poisson manifold (Rn,Π) and consider its
representation in the form (5.82). The vector field Z is Hamiltonian if and only if z(0) = 0 and
aij = 0. Hence,

H1
Π(Rn) = R(n−1)2

.

Proof. Recall that the Hamiltonian vector field Xh with Hamiltonian function h is

Xh = −(LE h)
∂

∂x1
+

∂h

∂x1
E,

and also note that this is its representation in the sense of Proposition 5.38. On the other hand, let

Z = z
∂

∂x1
+ fE + (aijxi)

∂

∂xj

be a Poisson vector field. Since such representation is unique, it follows that Z is Hamiltonian if and
only if aij = 0 and there exists h ∈ C∞Rn such that z = −LE h and f = ∂h

∂x1
. In particular, Z has the

form

Z = z
∂

∂x1
+ fE

and Z(0) = z(0) ∂
∂x1

. By Lemmas 5.35 and 5.40, the equation z = −LE H has a solution in H if and
only if z(0) = 0. In this case, condition (5.83) implies

0 = LE f +
∂z

∂x1
= LE f −

∂

∂x1
LE H = LE f −

([
∂

∂x1
,LE

]
+ LE

∂

∂x1

)
H = LE

(
f − ∂H

∂x1

)
.

Therefore, by Lemma 5.33, f − ∂H
∂x1

is a constant function in the variables x2, . . . , xn, i.e., it only
depends on the variable x1:

f − ∂H

∂x1
= k(x1).

Now, define h := H +
∫ x1

0 k dx1. Then,

LE h = LE H + LE

∫ x1

0
k dx1 = −z + 0 = −z,

∂h

∂x1
=
∂H

∂x1
+ k(x1) = f,

proving that h is the Hamiltonian for the Poisson vector field Z. As consequence, we have that every
Poisson cohomology class is uniquely determined by the value of each aij and z(0). Therefore,

H1
Π(Rn) = R(n−1)2

.

�



Chapter 6

The Modular Class of Poisson Structures on Foliated

Manifolds

In this chapter we study the behavior of the modular class of an orientable Poisson manifold and
formulate some unimodularity criteria in the semilocal context, around a (singular) symplectic leaf.
Our results generalize some known unimodularity criteria for regular Poisson manifolds related to the
notion of the Reeb class. In particular, we show that the unimodularity of the transverse Poisson
structure of the leaf is a necessary condition for the semilocal unimodular property. Our main tool
is an explicit formula for a bigraded decomposition of modular vector fields of a coupling Poisson
structure on a foliated manifold. Moreover, we also exploit the notion of the modular class of a
Poisson foliation and its relationship with the Reeb class.

This chapter is organized as follows. In Section 6.1 we review some basic notions and facts about
foliations. In Section 6.2 we study the relationship between the modular class of a Poisson foliation and
the Reeb class. The modular vector fields of coupling Poisson structures are described in Section 6.3
by using bigraded calculus on foliated manifolds. Section 6.4 is devoted to the study of the behavior of
the unimodularity property under gauge transformations. In Section 6.5 we derive some unimodularity
criteria for coupling Poisson structures and find cohomological obstructions to the unimodularity. In
Section 6.6 we examine the general unimodularity criteria for compatible Poisson structures on flat
Poisson foliations. Here the cohomological obstructions take values on the foliated de Rham-Casimir
complex. In Section 6.7 we apply the above results to describe the unimodularity in a neighborhood
of a symplectic leaf. Finally, in Section 6.8, we prove the well-definiteness of the notion of generalized
Reeb class of a symplectic leaf.

The contents of this chapter, with exception of Section 6.8, were published in [55].

6.1 Preliminaries: orientable foliations

We start by recalling some definitions and known facts about calculus on foliated manifolds. For
details, we refer to [31, 35, 65].

Foliated de Rham differential. Let V be a regular foliation on M . Denote by V := TV the
tangent bundle of V. There exists a derivation dV ∈ Der1

R Γ(∧•V ∗) of degree 1 which is a coboundary
operator, d2

V = 0, called the foliated exterior derivative. Notice that the foliated de Rham complex
(Γ(∧•V ∗), dV) is just the cochain complex of the Lie algebroid V associated to the foliation V. The
cohomology of the foliated de Rham complex of V will be denoted by H•dR(V).

Fix a normal distribution H ⊂ TM of the foliation V,

TM = H ⊕ V. (6.1)

123
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Then, the vector-valued 1-form γ ∈ Γ(T ∗M ⊗V ), defined as the projection prV : TM → V along H in
(6.1), is said to be a connection form on the foliated manifold (M,V). Conversely, every vector-valued
1-form γ ∈ Γ(T ∗M ⊗ V ) with γ|V = IdV induces the normal bundle H := ker γ of V. Then, the
curvature form Rγ ∈ Γ(∧2T ∗M ⊗ V ) of the connection is given by [35]

Rγ(X,Y ) := γ[(IdTM −γ)X, (IdTM −γ)Y ] ∀X,Y ∈ Γ(TM)

and controls the integrability of the normal bundle H. The connection γ is said to be flat if Rγ = 0.
Splitting (6.1) induces H-dependent bigradings of the exterior algebras of multivector fields and

differential forms on M :

Γ(∧•TM) =
⊕
p,q∈Z

Γ(∧p,qTM), Γ(∧•T ∗M) =
⊕
p,q∈Z

Γ(∧p,qT ∗M). (6.2)

Here, ∧p,qTM := ∧pH⊗∧qV and ∧p,qT ∗M := ∧pV ◦⊗∧qH◦, where H◦ := Ann(H) and V ◦ := Ann(V )
denote the annihilators of H and V , respectively. For a multivector field A, the term of bidegree (p, q)
in decomposition (6.2) is denoted by Ap,q. We follow same notation for differential forms. Moreover,
we have a bigraded decomposition for any linear operator on these exterior algebras. In particular,
the exterior differential splits as d = dγ1,0 + dγ2,−1 + dγ0,1, where dγ1,0 is the covariant exterior derivative
of γ and dγ2,−1 = − iRγ . Furthermore,

(dγ1,0)2 = LRγ (6.3)

and (dγ0,1)2 = 0 (for the definition of the Lie derivative LRγ , see [35]). It is clear that the canonical
inclusion of the leaves of V in M induces a cochain complex isomorphism,

(Γ(∧•V ∗),dV) ∼=
(

Γ(∧•H◦), dγ0,1
)
. (6.4)

For each µ ∈ Γ(∧•V ∗), we will denote by µγ ∈ Γ(∧•H◦) the corresponding element under the above
isomorphism. We use the same notation for cohomology classes.

We will denote by

aut(M,V) := {X ∈ Γ(TM) | [X,Γ(V )] ⊂ Γ(V )}

the Lie subalgebra of V-projectable vector fields. For each µ ∈ Γ(∧•V ∗) and X ∈ aut(M,V), the Lie
derivative LX µ ∈ Γ(∧•V ∗) is well-defined by the standard formula.

Divergence 1-form. Suppose that the foliation V on M is orientable, that is, there exists a nowhere
vanishing element τ ∈ Γ(∧topV ∗), called a leaf-wise volume form of V. Therefore, the restriction of τ to
each leaf L of V gives a volume form on L. For each X ∈ aut(M,V), the divergence divτ (X) ∈ C∞(M)
with respect to τ is defined by the relation LX τ = divτ (X)τ .

Fix a connection form γ on (M,V) associated to a normal bundle H of V. Then, one can think
of a leaf-wise volume form τ ∈ Γ(∧topV ∗) as a differential form τγ ∈ Γ(∧topH◦) vanishing only on the
sections of H. Recall that H◦ and V ∗ are of the same rank k. The divergence is given by the formula

divτ (X)τγ = (LX τγ)0,k (6.5)

for any X ∈ aut(M,V). Here, the bigraded decomposition of the k-form LX τγ consists of the terms
of bidegree (0, k) and (1, k − 1).



6.1. PRELIMINARIES: ORIENTABLE FOLIATIONS 125

Now, we observe that there exists a unique 1-form vanishing on vector fields tangent to V, θγτ ∈
Γ(V ◦), and such that

dγ1,0 τγ = θγτ ∧ τγ . (6.6)

Moreover, θγτ is related with the divergence by the condition

θγτ (X) = divτ (X) ∀X ∈ Γ(H) ∩ aut(M,V). (6.7)

Therefore, the 1-form θγτ ∈ Γ(V ◦) can be called the divergence form associated to the pair (τ, γ). By
using (6.6), (6.3), and (6.5), one can derive the following useful relations

dγ1,0 θ
γ
τ (X1, X2) = divτ (Rγ(X1, X2)), (6.8)

θγfτ = θγτ + dγ1,0 ln |f |, (6.9)

for all X1, X2 ∈ Γ(H) ∩ aut(M,V) and each nowhere vanishing f ∈ C∞(M).

The Reeb class. Let V be a regular foliation of M . Consider the tangent bundle V = TV and
its annihilator V ◦. We say that the foliation V is transversally orientable if there exists a nowhere
vanishing element ς ∈ Γ(∧topV ◦). In this case, we say that ς is a transversal volume element of V. In
particular, we have V = {X ∈ TM | iX ς = 0}.

It follows from the identity i[X,Y ] = [LX , iY ] ∀X,Y ∈ Γ(V ) that the Lie derivative along every
V-tangent vector field preserves the space of sections Γ(∧topV ◦). As a consequence, for each transversal
volume element ς of V, there exists a unique foliated 1-form λς ∈ Γ(V ∗) defined by the relation

LX ς = λς(X)ς, ∀X ∈ Γ(V ). (6.10)

Then, λς is a closed foliated 1-form, dV λς = 0. Moreover, by the standard arguments, the
dV -cohomology class (foliated de Rham cohomology class)

Mod(V) := [λς ] ∈ H1
dR(V), (6.11)

is independent of the choice of a transversal volume element ς and called the Reeb class of V (see,
for example, [31, Section 2], [32, Section 1], [1, Section 2]). The Reeb class is an obstruction to the
existence of a transversal volume element of V which is invariant under the flow of any vector field
tangent to the foliation. Alternatively, the vanishing of Mod(V) is equivalent to the existence of a
closed transversal volume element of V [31].

Example 6.1. Let π : M → S be a fiber bundle over an orientable base S. Consider the foliation
V := {π−1(x)}x∈S on M given by the surjective submersion π, called simple foliation. Then, V is a
transversally orientable foliation with trivial Reeb class. Indeed, given a volume form ς0 on the base
S, we get the transversal volume element ς = π∗ς0 of V. It is clear that ς is closed on M and hence
Mod(V) = 0. H

Pick a connection γ on (M,V) associated to a normal bundle H of V. For each transversal volume
element ς of V, there exists a 1-form λγς ∈ Γ(H◦) uniquely defined by the relation

dγ0,1 ς = λγς ∧ ς. (6.12)
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From here, taking into account the bidegrees of λγς and ς, we conclude that dγ0,1 λ
γ
ς = 0 and hence λγς

is a 1-cocycle of dγ0,1. Then, under the isomorphism (6.4), the Reeb class of the foliation V equals the
dγ0,1-cohomology class of λγς ,

Mod(V)γ = [λγς ]. (6.13)

Indeed, this is consequence of the following computation for all X ∈ Γ(V ):

λς(X)ς = LX ς = d iX ς + iX d ς = iX dγ0,1 ς = λγς (X)ς.

Observe that in the flat case, Rγ = 0, each leaf-wise volume form τ ∈ Γ(∧topV ∗) of V induces the
transversal volume element τγ of the integral foliation H of H. Furthermore, ∂H := dγ1,0 is the
corresponding foliated exterior derivative and, by (6.8), θγτ is a 1-cocycle of ∂H. Then, taking into
account (6.13), we conclude that the ∂H-cohomology class of θγτ coincides with the Reeb class of H.

To end this section we make the following remarks on the different interpretations of the Reeb
class.

Remark 6.2. The Reeb class is related to some characteristic classes of representations of the Lie
algebroid V associated to the foliation V [22, 38]. First, note that the Lie derivative along V-tangent
vector fields gives a representation D on the line bundle ∧topV ◦. By (6.10) and (6.11), the Reeb class
is just the characteristic class of this representation, Mod(V) = Char(∧topV ◦). On the other hand,
the Reeb class can be expressed in terms of the Bott connection ∇Bott on the normal bundle E := TM

V
of V [83]. Under the natural identification V ◦ ∼= E∗, the dual of the representation ∇Bott on ∧topE
coincides with D. Then, Char(∧topE) = −Mod(V). Finally, we observe that the Reeb class coincides
with the modular class of the Lie algebroid V [22, 36, 38], Mod(V) = Char(∧topV ⊗ ∧topT ∗M).

6.2 The modular class of a Poisson foliation

In this section, we describe the relationship between the modular class of a leaf-tangent Poisson
structure on a foliated manifold and the Reeb class.

First, let us recall the definitions and some properties of modular vector fields and the modular
class of a Poisson manifold [41, 83]. Let (M,Π) be an orientable Poisson manifold with Poisson bivector
field Π on M . Denote by Π] : T ∗M → TM the vector bundle morphism given by 〈β,Π]α〉 := Π(α, β).
Let Poiss(M,Π) := {X ∈ Γ(TM) | LXΠ = 0} and Ham(M,Π) := {Π] d f | f ∈ C∞(M)} be the
Lie algebras of Poisson and Hamiltonian vector fields on (M,Π), respectively. Then, the first Poisson
cohomology is H1

Π(M) = Poiss(M,Π)/Ham(M,Π).
Given a volume form Ω of M , one can define a derivation ZΩ

Π of C∞(M) by the formula ZΩ
Π(f) :=

divΩ(Π] d f), where divΩ is the divergence operator. The vector field ZΩ
Π is a Poisson vector field of

Π, called the modular vector field [41, 83] of the oriented Poisson manifold (M,Π,Ω).
In terms of the interior product, the modular vector field can be also defined by − iZΩ

Π
Ω = d iΠ Ω.

Here, i denotes the insertion operator which on decomposable multivector fields is given by iX1∧···∧Xk =
iX1 ◦ · · · ◦ iXk ∀Xi ∈ Γ(TM). Furthermore, if Ω′ is another volume form on M , then ZΩ′

Π = ZΩ
Π −

Π] d ln |f |, where f = Ω′/Ω. Hence, the Poisson cohomology class of ZΩ
Π is independent of the choice

of Ω. Therefore, Mod(M,Π) := [ZΩ
Π ] ∈ H1

Π(M) is an intrinsic Poisson cohomology class called the
modular class [83] of the orientable Poisson manifold (M,Π). A Poisson manifold with vanishing
modular class is said to be unimodular. The modular class is an obstruction to the existence of a
volume form which is invariant with respect to all Hamiltonian vector fields.
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As an example, consider the 3-dimensional oriented linear Poisson manifold (R3
(x,y,z),Π,Ω), where

Π = 1
2
∂
∂z ∧

(
x ∂
∂x + y ∂

∂y

)
and Ω is the Euclidean volume form. Then, ZΩ

Π = ∂
∂z cannot be a Hamiltonian

vector field since it is non-zero at 0. Moreover, on the regular domain Nreg := R3−{z-axis}, ∂
∂z admits

the Hamiltonian − ln(x2 + y2). Thus, even though Mod(Nreg,Π|Nreg) = 0, the Poisson manifold
(R3

(x,y,z),Π) is not unimodular.

Poisson foliations and orientability. A Poisson foliation consists of a triple (M,V, P ), where
V is a regular foliation on a manifold M endowed with a leaf-tangent Poisson bivector field P ∈
Γ(∧2V ), V = TV. It is clear that the characteristic distribution of P belongs to V , P ](T ∗M) ⊂ V ,
and hence each leaf L of V inherits from P a unique Poisson structure PL such that the inclusion
ιL : L ↪→ M is a Poisson map. Therefore, M is foliated by the Poisson manifolds (L,PL). Denote
by PoissV(M,P ) := Γ(V ) ∩ Poiss(M,P ) the Lie algebra of all Poisson vector fields of P tangent to
the foliation V. It is clear that, for every Z ∈ PoissV(M,P ), the restriction to a given leaf L of V is
a Poisson vector field of PL, Z|L ∈ Poiss(L,PL). Note also that the morphism P ] : Γ(V ∗) → Γ(V )
associated to the leaf-tangent Poisson structure P induces a linear mapping in cohomology (P ])∗ :

H1
dR(V) → PoissV (M,P )

Ham(M,P ) ⊂ H1
P (M) by (P ])∗[µ] := [P ]µ]. We call the quotient PoissV (M,P )

Ham(M,P ) the first

cohomology of the Poisson foliation (M,V, P ), which is just the first cohomology of the Lie algebroid
(V ∗, ι ◦ P ], {, }P ). Here, ι : V ↪→ TM is the inclusion map, and {, }P denotes the bracket of foliated
1-forms induced by P [36].

Suppose that V is orientable and fix a leaf-wise volume form τ ∈ Γ(∧topV ∗). The modular vector
field of the Poisson foliation (M,V, P ) with respect to τ is the leaf-tangent vector field ZτP ∈ Γ(V )
defined by the equality

iZτP τ = −dV iP τ. (6.14)

It follows from (6.14) that ZτP ∈ Poiss(M,P ) and ZfτP = ZτP − P ] d f for all nowhere vanishing
f ∈ C∞(M). Hence, there is a well-defined cohomology class of the Poisson foliation (M,V, P )

Mod(M,V, P ) := [ZτP ] ∈ PoissV(M,P )

Ham(M,P )

which can be called the modular class of the Poisson foliation (M,V, P ), or shortly, the foliated modular
class.

It is clear that in the case when a Poisson foliation V = {M} consists of a single leaf, the foliated
modular class of (M,V, P ) just coincides with the modular class of the Poisson manifold (M,P ).

Note that the modular class of a Poisson foliation (M,V, P ) can be viewed as a particular case of
the more general notion of the modular class of the corresponding triangular Lie bi-algebroid (V, P ),
P ∈ Γ(∧2V ) [36, 38].

The Poisson foliation (M,V, P ) is said to be unimodular if Mod(M,V, P ) = 0. Since the foliated
differential dV and the leaf-wise volume form τ restrict to the exterior differential and a volume form
τL = ι∗Lτ on each leaf L of V, we conclude from (6.14) that the restriction of the modular vector
field ZτP to the leaf L is the modular vector field with respect to τL of the Poisson structure PL,
ZτP |L = ZτLPL . Therefore, the unimodularity of the Poisson foliation implies the unimodularity of each
leaf. But the converse is not necessarily true.

Here are some useful properties of the modular vector field of the Poisson foliation (M,V, P ). Note
that, for all X ∈ aut(M,V), we have [X,Γ(∧•V )] ⊂ Γ(∧•V ), where [·, ·] denotes the Schouten-Nijenhuis
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bracket for multivector fields [21]. By definition (6.14), and from the standard commuting relations
between the operators LX , dV , and iA, A ∈ Γ(∧•V ), we derive the following properties of the modular
vector field ZτP

LZτP f = divτ (P ] d f), (6.15)

[ZτP , X] = P ] d(divτ (X)), (6.16)

for any f ∈ C∞(M) and X ∈ aut(M,V) ∩ Poiss(M,P ).
Furthermore, given a connection form γ ∈ Γ(T ∗M ⊗ V ) on (M,V), the modular vector field of

(M,V, P ) relative to τ ∈ Γ(∧topV ∗) is determined by

− iZτP τγ = dγ0,1 iP τγ . (6.17)

If, in addition to the orientability of V, the manifold M is orientable (or, equivalently, V is
transversally orientable), then we have a relation between the modular class of the Poisson structure
P on M , the modular class of the Poisson foliation (M,V, P ) and the Reeb class of V.

Proposition 6.3. Let (M,V, P ) be an orientable and transversally orientable Poisson foliation. Then,
the modular class Mod(M,P ) of the Poisson manifold P ∈ Γ(∧2V ) is related to the foliated modular
class Mod(M,V, P ) and the Reeb class Mod(V) of V by the formula

Mod(M,P ) = Mod(M,V, P )− (P ])∗Mod(V). (6.18)

Proof. Let τ ∈ Γ(∧topV ∗) be a leaf-wise volume form and ς ∈ Γ(∧sV ◦) a transversal volume element
of V, s = codimV. Pick a connection form γ on (M,V) associated to a normal bundle H of V. Then,
Ω := ς∧τγ is a volume form on M . Let ZΩ

P and ZτP be the modular vector fields of (M,P ) and (M,V, P )
with respect to the volume forms Ω and τ , respectively. Consider also the 1-form λγς ∈ Γ(H◦) given
by (6.12). We claim that

ZΩ
P = ZτP − P ]λγς . (6.19)

Indeed, by bigrading arguments and equality (6.17), we get

− iZΩ
P

Ω = d iP Ω = dγ0,1(ς ∧ iP τγ) = dγ0,1 ς ∧ iP τγ + (−1)sς ∧ dγ0,1 iP τγ

= λγς ∧ ς ∧ iP τγ − (−1)sς ∧ iZτP τγ = (−1)sς ∧ ii
λ
γ
ς
P τγ − (−1)sς ∧ iZτP τγ

= iP ]λγς Ω− iZτP Ω.

Here we have applied, on the second and fifth steps, the identity

iA(α ∧ β) = (−1)|A|(α ∧ iA β − iiα A β), (6.20)

valid for all α ∈ Γ(T ∗M), β ∈ Γ(∧•T ∗M) and A ∈ Γ(∧•TM). Thus, we have proved (6.19), which
implies (6.18). �

The following corollary to Proposition 6.3 gives us a unimodularity criterion for a class of Poisson
foliations coming from fibrations.

Corollary 6.4. Let (M
π→ S, P ) be a locally trivial Poisson fiber bundle. Suppose that the total

space M and the base S are orientable. If the typical fiber F is a unimodular Poisson manifold, then
Mod(M,P ) = 0.
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Proof. Consider the regular foliation V := {π−1(x)}x∈S on M associated to the projection π. As
explained in Example 6.1, the orientability of the base implies Mod(V) = 0. Then, by (6.18), it
suffices to show that Mod(M,V, P ) = 0. Fix a nowhere vanishing top section τ ∈ Γ(∧topV ∗), where
V := ker dπ is the vertical bundle, and a family of trivializations Mi := π−1(Ui) ∼= Ui×F over open sets
Ui which cover S. By the unimodularity hypothesis for F , one can equip each trivial Poisson bundle
(πi : Mi → Ui, Pi := P |Mi) with a leaf-wise volume form of positive orientation τi ∈ Γ(∧topV ∗|Mi) such
that the corresponding modular vector field is zero, ZτiPi = 0. From here and the partition of unity
argument, we conclude that there exists a global leaf-wise volume form τ0 of V such that LP ] d f τ0 = 0
for all f ∈ C∞(M). �

In the regular case, as a consequence of Proposition 6.3, we recover the result due to [83, 1] which
says that the modular class of an orientable regular Poisson manifold is determined by the Reeb
class of its symplectic foliation. Indeed, suppose that the Poisson manifold (M,P ) is regular with
rankP = 2s. Let V = S be the symplectic foliation of P equipped with the leaf-wise symplectic form
ω. Then, the canonical leaf-wise volume form τ = ∧sω of the symplectic foliation is such that the
modular vector field of the Poisson foliation (M,S, P ) is zero, ZτP = 0. If, in addition, M is orientable,
then the symplectic foliation is transversally orientable. Therefore, in this case, formula (6.18) reads
Mod(M,P ) = −(P ])∗Mod(S).

6.3 Modular vector fields of coupling Poisson structures

Let V be a regular foliation of the smooth manifold M . Consider the tangent bundle V = TV and its
annihilator V ◦ ⊂ T ∗M .

Suppose we are given a V-coupling Poisson structure [77, 65] Π ∈ Γ(∧2TM), that is, a Poisson
bivector on M such that

H := Π](V ◦) (6.21)

is a normal bundle of the foliation,

TM = H ⊕ V. (6.22)

Then, the bigraded decomposition of Π with respect to (6.22) is of the form Π = Π2,0 + Π0,2, where
ΠH := Π2,0 ∈ Γ(∧2H) is a bivector field of constant rank, with rank ΠH = rankH, and Π0,2 ∈ Γ(∧2V )
is a Poisson tensor on M tangent to the foliation V. Therefore, we can associate to the V-coupling
Poisson structure Π the Poisson foliation (M,V, P := Π0,2). Notice that the characteristic distribution
of Π splits as Π](T ∗M) = H⊕P ](V ∗). Hence, rank Π = rankH+ rankP , so the set of singular points
of Π and P coincide.

Moreover, the restriction Π]
H |V ◦ : V ◦ → H is a vector bundle isomorphism and hence one can

define an H-nondegenerated 2-form σ ∈ Γ(∧2V ◦), called the coupling form, by

σ[|H := −(Π]
H |V ◦)

−1 : H → V ◦. (6.23)

Let γ be the connection form on (M,V) associated to the normal bundle H in (6.21). Then, the
geometric data (P, γ, σ) associated to the coupling Poisson tensor Π satisfy the following structure
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equations [77, 65, 78]

[X,P ] = 0 ∀X ∈ Γ(H) ∩ aut(M,V), (6.24)

Rγ(X,Y ) = −P ] d[σ(X,Y )] ∀X,Y ∈ Γ(H) ∩ aut(M,V), (6.25)

dγ1,0 σ = 0. (6.26)

In particular, the first equation means that γ is a Poisson connection on (M,V, P ). Moreover, by
the H-nondegeneracy property of the coupling form σ, the foliation V admits a canonical transversal
volume element given by l times the product of σ, σl := σ∧· · ·∧σ ∈ Γ(∧topV ◦), where 2l := rankV ◦ =
rankH.

Now, assume that V is an orientable foliation. Then, one can associate to each leaf-wise volume
form τ ∈ Γ(∧topV ∗) of V a volume form Ω of M by Ω := σl ∧ τγ . Moreover, recall that τ gives rise to
the divergence 1-form θγτ ∈ Γ(V ◦), defined by (6.6), and the modular vector field ZτP of the Poisson
foliation (M,V, P ), introduced in (6.14). We describe the modular vector fields of coupling Poisson
structures in terms of these objects.

Proposition 6.5. Let Π be a coupling Poisson structure on the orientable foliated manifold (M,V)
associated to geometric data (P, γ, σ). Fix a leaf-wise volume form τ of V and consider the volume
form Ω := σl ∧ τγ of M . If Z := ZΩ

Π is the corresponding modular vector field, then the bigraded
components of Z relative to the splitting (6.22) are given by

Z1,0 = −Π](θγτ ), Z0,1 = ZτP . (6.27)

Proof. By the definition of the modular vector field Z and using the bigraded decompositions of d and
Π, we have

− iZ Ω = d iΠ Ω = dγ1,0 iΠH Ω + dγ0,1 iP Ω + dγ2,−1 iΠH Ω

= dγ1,0 iΠH σ
l ∧ τγ + iΠH σ

l ∧ dγ1,0 τγ + dγ0,1 σ
l ∧ iP τγ

+ σl ∧ dγ0,1 iP τγ − iiΠH Rγ Ω. (6.28)

It follows from (6.23) that iΠH σ
l = −lσl−1. This together with (6.26) implies dγ1,0 iΠH σ

l = 0. On

the other hand, there exists a 1-form Λ ∈ Γ(H◦) satisfying the relation dγ0,1 σ
l = Λ ∧ σl. Then, from

(6.28), by using (6.17), (6.6) and (6.20), we get

− iZ Ω = θγτ ∧ iΠH σ
l ∧ τγ + Λ ∧ σl ∧ iP τγ − σl ∧ iZτP τγ − iiΠH Rγ Ω

= i
Π]H(θγτ )

Ω + iP ]Λ Ω− iZτP Ω− iiΠH Rγ Ω.

It is left to show
iΠH R

γ = P ]Λ. (6.29)

Consider the 2l-vector field given by l times the product of ΠH , Πl
H := ΠH ∧ · · · ∧ ΠH . Using again

identities (6.20), (6.26) and the bigrading argument, we evaluate

(iΠlH
σl)Λ = iΠlH

(Λ ∧ σl) = iΠlH
(dσl) = iΠlH

(l dσ ∧ σl−1)

= − iΠlH
(dσ ∧ iΠH σ

l) = −(iΠlH
σl) iΠH dσ.
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From here and taking into account that iΠlH
σl 6= 0, we conclude Λ = − iΠH dσ. On the other hand,

the curvature identity (6.25) implies the equality iΠH R
γ = −P ] iΠH dσ which together with the above

representation for Λ proves (6.29). �

As mentioned above, the set of singular points of the coupling Poisson structure Π coincides with
the set of singular points of its leaf-tangent part P = Π0,2. From the relations (6.27), we derive the
following information on the behavior of the modular vector fields of Π at the singular points.

Corollary 6.6. A modular vector field of the Poisson manifold (M,Π) is tangent to the symplectic
foliation of Π at a point x ∈M if and only if a modular vector field ZτP ∈ Γ(V ) of the Poisson foliation
(M,V, P ) is tangent to the symplectic foliation of P at x. In particular, this is true if x is a regular
point of P .

Remark 6.7. More generally, for a Poisson submanifold N of a Poisson manifold (M,Π), one can
introduce the notion of a relative modular class of N [11]. If this class vanishes, then the modular vector
field of (M,Π) is tangent to N . In particular, this criterion can be applied when N is a symplectic
leaf.

Notice that the 1-form Λ ∈ Γ(H◦), arising in (6.29), just coincides with the 1-form λγς defined by
(6.12) for ς = σl, whose dγ0,1-cohomology class gives the Reeb class of the foliation V. Moreover, by
the curvature relation (6.29) and Proposition 6.3, we conclude that if γ is flat, Rγ = 0, then

Mod(M,P ) = Mod(M,V, P ). (6.30)

Now, let us consider the Lie algebra PoissV(M,P ) of all V-tangent Poisson vector fields of P .
Then, the projection γ : TM → V along H in decomposition (6.22) induces the linear mapping [71]

γ∗ : H1
Π(M)→ PoissV(M,P )

Ham(M,P )
⊂ H1

P (M) (6.31)

from the first Poisson cohomology of (M,Π) to the first cohomology of the Poisson foliation (M,V, P ).
As a consequence of Proposition 6.5, this map is natural with respect to the modular classes.

Corollary 6.8. The quotient map (6.31) takes the modular class of the Poisson manifold (M,Π) to
the modular class of the Poisson foliation (M,V, P ), γ∗(Mod(M,Π)) = Mod(M,V, P ).

6.4 Gauge transformations

As we already mentioned above, according to [83, 1], the unimodularity of an orientable regular Poisson
manifold (M,Π) is equivalent to the triviality of the Reeb class of the characteristic (symplectic)
foliation S of Π. In other words, this means that the unimodularity property is independent of the
leaf-wise symplectic structure on S in the following sense: if Π̃ is another regular Poisson structure on
M which has the same characteristic foliation S, then the unimodularity of Π implies Mod(M, Π̃) = 0.
But this fact is no longer true in the singular case.

For example, let us consider on R3, with coordinate functions (x1, x2, x3), the linear Poisson
structure Π = 1

2εijkxi
∂
∂xj
∧ ∂

∂xk
associated to the Lie algebra so(3). Here εijk are the Levi-Civita

symbols. We are using the Einstein summation convention. Consider also the homogeneous Poisson
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structure Π̃ = fΠ, where f(x1, x2, x3) := x4
1 + x4

2 + x4
3. It is clear that the characteristic foliations

of these structures coincide. Computing the corresponding modular vector fields with respect to the
Euclidean volume form Ω in R3, we get ZΩ

Π ≡ 0 and

ZΩ
Π̃

= 2εijk
(
x3
ixj − xix3

j

) ∂

∂xk
6= 0.

This shows that Π is unimodular, while Π̃ is not, even though they have the same characteristic
foliation.

On the other hand, there exists an equivalence relation for (possibly singular) Poisson structures,
called the gauge equivalence [79], which preserves the unimodularity property.

Let (M,Π) be a Poisson manifold. Suppose we are given a closed 2-form B on M such that the
endomorphism

(Id−B[ ◦Π]) : T ∗M → T ∗M (6.32)

is invertible. Then, there exists a Poisson bivector field Π̃ on M defined by the relation Π̃] = Π] ◦
(Id−B[◦Π])−1 and represents the result of Π under the gauge transformation induced by B [79, 9]. In
this case, we say that Π̃ is gauge equivalent to Π. The gauge transformation modifies only the leaf-wise
symplectic form of Π by means of the pull-back of the closed 2-form B, preserving the characteristic
foliation. Furthermore, gauge transformations preserve the unimodularity property.

Proposition 6.9. If Π and Π̃ are gauge equivalent Poisson structures on M , then

Mod(M,Π) = 0 ⇐⇒ Mod(M, Π̃) = 0. (6.33)

Proof. The modular class Mod(M,Π) of the orientable Poisson manifold (M,Π) is one-half the modular
class of the cotangent bundle T ∗M of M with the Lie algebroid structure defined by Π [22]. As is
known [79], the map (6.32) induced by the gauge transformation is an isomorphism between the
cotangent Lie algebroids associated to Π and Π̃. This proves the statement. �

6.5 Unimodularity criteria

Assume that on the orientable foliated manifold (M,V), we are given a V-coupling Poisson structure Π
associated to geometric data (P, γ, σ). Our point is to formulate some conditions for the unimodularity
of Π in terms of the geometric data.

The following fact is a direct consequence of Corollary 6.8.

Lemma 6.10. The unimodularity of the coupling Poisson structure Π implies the unimodularity of
the Poisson foliation (M,V, P ).

Therefore, a necessary condition for vanishing of the modular class of Π is Mod(M,V, P ) = 0.
Moreover, it follows from Proposition 6.3 that the unimodularity of Π implies the unimodularity of
the leaf-tangent Poisson structure P in the case when the Reeb class of the foliation V is trivial.

The next criterion follows from Proposition 6.5 and the following well-known fact [83]: a Poisson
manifold is unimodular if and only if the modular vector field is zero with respect to a certain volume
form.
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Lemma 6.11. The V-coupling Poisson structure Π is unimodular if and only if there exists a leaf-wise
volume form τ ∈ Γ(∧topV ∗), V = TV, such that

ZτP = 0 and dγ1,0 τγ = 0.

It follows that the unimodularity of Π is independent of the coupling form σ. In other words, the
mapping

(P, γ, σ) 7→ (P, γ, σ̃)

is a foliation-preserving transformation which do not alter the unimodularity property, provided that
σ̃ satisfies the nondegeneracy condition and the structure equations (6.25), (6.26). This is also a
“singular” analog of the fact that, for a regular Poisson manifold, the unimodularity is independent
of the leaf-wise symplectic form.

Now let us describe a special class of gauge transformations which preserve the coupling Poisson
structures and naturally appear in the context of the averaging method [68]. Consider the case when
the gauge form B is exact with a primitive µ vanishing along the leaves of the foliation V:

B = −dµ, µ ∈ Γ(V ◦). (6.34)

Then, assuming that the map (6.32) is invertible, one can show [68] that the Poisson structure Π̃
resulting of the gauge transformation of Π is again V-coupling. Furthermore, if (P̃ , γ̃, σ̃) is the
geometric data associated to Π̃, then P̃ = P and γ̃ is related to γ by

γ(X)− γ̃(X) = P ] d[µ(X)] ∀X ∈ aut(M). (6.35)

Fix a nowhere vanishing section τ ∈ Γ(∧topV ∗) and let us look at the corresponding divergence

forms θγ̃τ and θγτ . By relations (6.7) and (6.35), for every X ∈ aut(M,V), we have

θγ̃τ (X)− θγτ (X) = divτ (P ] dµ(X)) = LZτP (µ(X)). (6.36)

Here, we used the identity (6.15). Formulas (6.27), (6.36), give the transition rule for the modular
vector fields of Π and Π̃.

Next, if Π is unimodular, then by Lemma 6.11 we can choose a leaf-wise volume form τ of V such
that ZτP = 0 and θγτ = 0. In this case, we have θγ̃τ = θγτ = 0. Hence by Proposition 6.5, if the modular
vector field of Π with respect to the volume form Ω = σl ∧ τγ is zero, then the modular vector field of

Π̃ with respect to Ω̃ = σl ∧ τγ̃ is also zero.

Cohomological obstructions to the unimodularity. By Lemma 6.10, a necessary condition for
the unimodularity of the V-coupling Poisson structure Π on (M,V) is the unimodularity of the Poisson
foliation (M,V, P ). We will show that this condition is not sufficient, since there exists a cohomological
obstruction to the unimodularity of Π.

Consider the Poisson foliation (M,V, P, γ) equipped with the Poisson connection γ corresponding
to the normal bundle H in (6.21). Then, one can associate to this setup the following cochain complex
(C•, dγ), where the subspaces Cp ⊂ Γ(∧pV ◦) are defined by

Cp := {β ∈ Γ(∧pV ◦) | iX1 · · · iXp β ∈ Casim(M,P ), ∀ Xi ∈ aut(M,V)} (6.37)



134 6. THE MODULAR CLASS OF POISSON STRUCTURES ON FOLIATED MANIFOLDS

and d
γ

:= dγ1,0 |C• is the restriction of dγ1,0 to C•. Therefore, Cp consists of p-forms on M vanishing
along the leaves of V and taking values in the space of Casimir functions of P on the projectable vector
fields.

There exists the following short exact sequence [71]:

0→ H1
d
γ

(Π]H)∗

−→ H1
Π(M)

γ∗−→ ker ρ

Ham(M,P )
→ 0, (6.38)

where ρ : Aγ → H2
d
γ is a morphism from a Lie subalgebra Aγ ⊂ PoissV(M,P ), associated with the

pair (P, γ), to the second cohomology space of (C•,dγ).
According to Corollary 6.8 and (6.38), if

Mod(M,V, P ) = 0, (6.39)

then there exists a unique cohomology class in H1
d
γ such that its image under −(Π]

H)∗ is Mod(M,Π).
This cohomology class can be described as follows.

Theorem 6.12. Let M be an orientable manifold, and V an orientable foliation on M . Suppose that
the V-coupling Poisson structure Π on M satisfies (6.39). Fix a leaf-wise volume form τ ∈ Γ(∧topV ∗)
of V such that ZτP = 0 and consider the Poisson connection γ associated to H in (6.21). Then, the
corresponding divergence form θγτ in (6.6) is a 1-cocycle of the cochain complex (C•, dγ), θγτ ∈ C1 and
d
γ
θγτ = 0. Furthermore, the d

γ
-cohomology class of θγτ is independent of the choice of τ and related

with the modular class of Π by Mod(M,Π) = −(Π]
H)∗[θγτ ].

Proof. By (6.24), every projectable section X ∈ Γ(H)∩aut(M,V) is a Poisson vector field of P . Then,
by using the condition ZτP = 0, properties (6.7) and (6.16), we get

P ] d[θγτ (X)] = P ] d[divτ (X)] = [ZτP , X] = 0.

Therefore, θγτ (X) ∈ Casim(M,P ) ∀X ∈ Γ(H) ∩ aut(M,V) and hence θγτ ∈ C1. Moreover, relations
(6.8), (6.25) and (6.15) imply that θγτ is d

γ
-closed. Indeed, for all X1, X2 ∈ aut(M,V),

(d
γ
θγτ )(X1, X2) = divτ (Rγ(X1, X2)) = −divτ (P ] d[σ(X1, X2)])

= −LZτP [σ(X1, X2)] = 0.

Note that any two leaf-wise volume forms for which the modular vector fields of the Poisson foliation
(M,V, P ) vanish are related by multiplication of a Casimir function. Thus, it follows from the
transition rule (6.9) that [θγτ ] ∈ H1

d
γ is independent on the choice of τ . Finally, Mod(M,Π) =

−(Π]
H)∗[θγτ ] follows from (6.27). �

Corollary 6.13. If the Poisson foliation (M,V, P ) associated to the V-coupling Poisson structure Π
is unimodular, then the unimodularity of Π is equivalent to the triviality of the d

γ
-cohomology class of

θγτ , that is, Mod(M,Π) = 0⇐⇒ [θγτ ] = 0.

Example 6.14. Consider the particular case when the leaf-tangent Poisson structure P is trivial,
P = 0. Then, the coupling Poisson structure Π is regular since its characteristic distribution coincides
with the normal bundle H. Moreover, (C•, dγ) identifies with the foliated de Rham complex of the
symplectic foliation S of Π. In particular, the cohomology class [θγτ ] coincides with the Reeb class
Mod(S). H
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Note that the coupling Poisson structure Π with P = 0 can be characterized as a regular Poisson
structure whose symplectic foliation S admits a transversal foliation V, TM = TS⊕TV. So, in this
case, the unimodularity criterion of Corollary 6.13 recovers the results due to [83, 1].

6.6 Flat Poisson foliations

Suppose we start with a Poisson foliation (M,V, P ) consisting of a regular foliation V on M and a
leaf-tangent Poisson structure P ∈ Γ(∧2V ). Suppose we are also given a regular foliation F on M
with properties: the tangent bundle F := TF is complementary to V = TV, TM = F⊕ V , and every
V-projectable section Z of F is a Poisson vector field on (M,P ),

Z ∈ Γpr(F) =⇒ LZP = 0. (6.40)

In other words, there is a flat Poisson connection γ0 ∈ Γ(T ∗M ⊗ V ) on (M,V, P ) associated to the
tangent bundle of F , F = ker γ0, and hence γ0 : TM → V is the projection along F.

Let us associate to the flat Poisson foliation (M,V, P,F) the following objects. According to the
dual splitting T ∗M = V ◦ ⊕ F◦, we have the bigrading of differential forms on M and the bigraded
decomposition of the exterior differential on M : d = ∂F + ∂V , where ∂F := dγ0

1,0 and ∂V := dγ0
0,1 are the

coboundary operators on Γ(∧•T ∗M) associated to the foliated differentials dF and dV . So, ∂2
F = 0,

∂2
V = 0 and ∂F∂V + ∂V∂F = 0.

Consider the subspaces Cp defined in (6.37). In particular, C◦ = Casim(M,P ). Furthermore,
because of (6.40), C• :=

⊕
p∈Z Cp is a ∂F -invariant subspace of Γ(∧•T ∗M) and hence the restriction

∂F := ∂F |C• is a well-defined coboundary operator. This gives rise to a cochain subcomplex (C•, ∂F ) of
(Γ(∧•V ◦), ∂F ) attributed to the flat Poisson foliation which will be called the foliated de Rham-Casimir
complex [71]. The corresponding cohomology space will be denoted by H•

∂F
.

We have the following useful property [71].

Lemma 6.15. The natural homomorphism from H1
∂F

to the first foliated de Rham cohomology H1
dR(F)

is injective if and only if
∂F (Casim(M,P )) = ∂F (C∞(M)) ∩ C1. (6.41)

We say that a V-coupling Poisson structure Π on the flat Poisson foliation (M,V, P,F) is compatible
if Π0,2 = P and the Poisson connection γ induced by the normal subbundle H = Π](T ∗M) satisfies
the condition

γ0(X)− γ(X) is tangent to P ](T ∗M), ∀X ∈ Γ(TM).

This compatibility condition implies that d
γ

= ∂F and hence the cochain complex (C•, dγ) associated
to Π coincides with the foliated de Rham-Casimir complex. Also, we say that Π is strongly compatible
if there exists µ ∈ Γ(V ◦) such that γ and γ0 are related by (6.35).

First, we formulate a unimodularity criterion for the class of strongly compatible Poisson structures
which involves the injectivity condition (6.41).

Theorem 6.16. Let (M,V, P,F) be a flat Poisson foliation and Π a strongly compatible coupling
Poisson structure. If Π is unimodular then

Mod(F) = 0 and Mod(M,V, P ) = 0. (6.42)

Conversely, under the injectivity condition (6.41), the unimodularity of (M,Π) is equivalent to (6.42).
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Proof. Since Π is compatible, we have d
γ

= ∂F , so H1
d
γ = H1

∂F
. Moreover, if Mod(M,V, P ) = 0,

then the cohomology classes [θγτ ] ∈ H1
d
γ and [θγ0

τ ] ∈ H1
∂F

of the divergence 1-forms also coincide.

Indeed, by the strong compatibility, formula (6.36) holds, so condition Mod(M,V, P ) = 0 implies
[θγτ ] = [θγ0

τ ]. On the other hand, as shown in Section 6.1, the ∂F -cohomology class of θγ0
τ is the

Reeb class Mod(F) ∈ H1
dR(F). In other words, the image of [θγ0

τ ] under the morphism in Lemma
6.15 is Mod(F). Finally, recall that by Corollary 6.13, the unimodularity of (M,Π) is equivalent to
Mod(M,V, P ) = 0 and [θγτ ] = 0. By our above discussion, this implies Mod(F) = 0. Conversely,
under the injectivity condition (6.41), equation (6.42) implies [θγτ ] = [θγ0

τ ] = 0. By Corollary 6.13, the
proof is complete. �

We have also the following unimodularity criterion in the case when the first cohomology of the
foliated de Rham-Casimir complex is trivial.

Theorem 6.17. Let Π be a compatible coupling Poisson structure on the flat Poisson foliation
(M,V, P,F). If

H1
∂F

= {0}, (6.43)

then (M,Π) is unimodular if and only if Mod(M,V, P ) = 0.

Proof. The compatibility condition implies H1
d
γ = H1

∂F
. Thus, the short exact sequence (6.38) reads

0→ H1
∂F

(Π]H)∗

−→ H1
Π(M)

γ∗−→ ker ρ

Ham(M,P )
→ 0.

Hence, under condition (6.43), the projection γ∗ is an isomorphism. Moreover, by Corollary 6.8, γ∗

maps Mod(M,Π) to Mod(M,V, P ). �

Now let us discuss some realizations of conditions (6.41), (6.43). Consider the space Ham(M,P ) of
Hamiltonian vector fields of the V-tangent Poisson structure P . Then one can introduce the following
two subspaces of Ham(M,P ) depending on the foliation F . Let HamF (M,P ) := {P ] d f | f ∈
C∞(M), ∂Ff = 0} be the Lie algebra of all Hamiltonian vector fields of F-projectable functions, and
Ham0(M,P ) := {Y ∈ Ham(M,P ) | [Y,Γpr(F)] = 0} the Lie algebra of F-projectable Hamiltonian
vector fields. It follows from Γpr(F) ⊂ Poiss(M,P ) that HamF (M,P ) ⊆ Ham0(M,P ). Then, we have
the following fact [71]: injectivity condition (6.41) holds if and only if HamF (M,P ) = Ham0(M,P ).
This condition together with the assumption H1

dR(F) = {0} on the triviality of the first foliated de
Rham cohomology of (M,F) implies (6.43).

Moreover, we have the following realization of condition (6.43) in the case of a flat Poisson fibration.
Suppose we have a transversal bi-fibration N

ν←M
π→ S,

TM = ker dν ⊕ ker dπ.

Let F = {ν−1(ξ)}ξ∈N and V = {π−1(q)}q∈S be the regular foliations of M defined by the fibers of the
submersions ν and π, respectively. So, F = TF = ker dν and V = TV = ker dπ. Assume also that we
are given a Poisson tensor P ∈ Γ(∧2V ) such that the triple (M

π→ S, P,F) is a flat Poisson fibration,
that is, Γpr(F) ⊂ Poiss(M,P ). Then, there exists a unique Poisson structure Ψ on N such that the
projection ν : (M,P )→ (N,Ψ) is a Poisson map. One can show [71] that condition (6.43) holds if

H1
dR(F) = {0} and H1

Ψ(N) = {0}.

Notice that the last condition implies (6.41).
We conclude this section by constructing a class of unimodular compatible Poisson structures.
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Flat coupling Poisson structures. Let (M,V, P,F) be a flat Poisson foliation. Suppose we are
given a ∂F -closed, F-nondegenerated 2-form σ0 ∈ C2, that is, ∂Fσ0 = 0 and σ[0|F : F → V ◦ is an
isomorphism. Then, one can define a coupling Poisson structure associated with the geometric data
(P, γ0, σ0):

Πflat = ΠF + P, (6.44)

where ΠF ∈ Γ(∧2F) is a bivector field defined by the condition that the restriction (ΠF )]|V ◦ equals
to the inverse of −σ[0|F. In this case, ΠF is a regular Poisson tensor which together with P forms a
Poisson pair. Since the symplectic foliation of ΠF is just F , it is clear that Πflat is a compatible Poisson
structure and Mod(M,ΠF ) = −Π]

F (Mod(F)). Assuming that V is orientable and equipped with a
nowhere vanishing section τ ∈ Γ(∧topV ∗), we define a volume form as Ω0 = σl0 ∧ τγ0 , 2l := rankF.
Then, the modular vector field of Πflat relative to Ω0 is represented as ZΩ0

Πflat
= ZΩ0

ΠF
+ ZΩ0

P . Under
the injectivity condition (6.41), we conclude from (6.30) and Theorem 6.16 that Πflat is unimodular
if and only if Mod(F) = 0 and Mod(M,P ) = 0. In this case, according to Proposition 6.9, a gauge
transformation (6.32), (6.34) modifies Πflat preserving the unimodularity property.

6.7 Coupling neighborhoods of a symplectic leaf

Let (M,Π) be a Poisson manifold and ι : S ↪→M an embedded symplectic leaf.
By a coupling neighborhood of S, we mean an open neighborhood N of S in M equipped with a

surjective submersion π : N → S such that π ◦ ι = IdS ,

rankH = dimS, and H ∩ V = {0}, (6.45)

where V = ker dπ is the vertical subbundle of π and H = Π](V ◦) is the horizontal subbundle associated
to Π. It is clear that conditions in (6.45) are equivalent to the splitting TN = H ⊕ V . Therefore
the restriction Π|N is a V-coupling Poisson structure on N , where the foliation V = Vπ := {Nq =
π−1(q)}q∈S is given by the π-fibers. Taking into account that the symplectic leaf S is an orientable
manifold, we conclude that the Reeb class of Vπ is trivial (see Example 6.1). So, Π|N has a bigraded
decomposition into a horizontal part of constant rank and a vertical Poisson tensor P ∈ Γ(∧2V )
vanishing at the points of S. The Poisson structure P is said to be a transverse Poisson structure of
the leaf. The restriction Pq := P |Nq of P to the fiber Nq over every point q ∈ S just gives the transverse
Poisson structure of q due to Weinstein’s splitting theorem [82]. Moreover, the Poisson connection
γ on N is defined by ker γ = Π](V ◦) and the coupling form σ ∈ Γ(∧2V ◦) has the representation
σ = π∗ω + σ̃, where ω is the symplectic form on S and σ̃ is a horizontal 2-form vanishing at S.

For a given embedded symplectic leaf S, there exists always such a coupling neighborhood N
[77]. In particular, one can choose N as a tubular neighborhood of S diffeomorphic to the normal
bundle E = TSM�TS of the symplectic leaf. If the normal bundle E is orientable, then N admits a
volume form. Of course, this is true in the case when M is orientable. Hence, under the orientability
hypothesis, the point is to study the germs at S of the modular vector fields of Π and the corresponding
germified modular class.

First we formulate the following result.

Proposition 6.18. If the Poisson structure Π is unimodular in a neighborhood of the embedded
symplectic leaf S, then there exists a coupling neighborhood N of S such that the transverse Poisson
structure P of S is also unimodular.
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Proof. The statement follows from Lemma 6.10, Proposition 6.3 and the fact that in a tubular
neighborhood of S, the Reeb class of the fibration is trivial. �

We say that the germ of the transverse Poisson structure at a point q ∈ S is unimodular if there
exists a submanifold Nq of M meeting the symplectic leaf S at q transversally, and such that

Mod(Nq, Pq) = 0.

Theorem 6.19. Let S be an embedded symplectic leaf of an orientable Poisson manifold (M,Π)
and q ∈ S a fixed point. Assume that the germ at q ∈ S of the transverse Poisson structure Pq is

unimodular. Then, one can choose a coupling neighborhood (N
π→ S) of S with properties: there exists

a leaf-wise volume form τ ∈ Γ(∧topV ∗) of the vertical subbundle Vπ such that the modular vector field
of the Poisson foliation (N,Vπ, P ) vanishes. Furthermore, the modular vector field of Π|N with respect
to the volume form Ω = σl ∧ τγ is tangent to the symplectic foliation and the corresponding modular
class is given by

Mod(N,Π|N ) = −(Π]
H)∗[θγτ ].

Here, the divergence form θγτ induced by the pair (τ, γ) is a 1-cocycle of the cochain complex (C•,dγ).

Proof. Choose a coupling neighborhood N such that the Poisson fiber bundle (N
π→ S, P ) is

locally trivial with typical fiber (Nq, Pq). Then, by the proof of Corollary 6.4 we conclude that
Mod(N,Vπ, P ) = 0. From Theorem 6.12, we derive the desired result. �

Flat coupling neighborhoods. We say that a coupling neighborhood N
π→ S over the leaf S is flat

if there exists a regular foliation F on N such that (i) the tangent bundle F := TF is complementary
to the vertical subbundle V of π; (ii) each π-projectable section of F is an infinitesimal automorphism
of the transverse Poisson structure P ∈ Γ(∧2V ); (iii) the foliation is compatible with the Poisson
connection γ on N associated to the horizontal subbundle H in the following sense:

X − γ(X) is tangent to P ](T ∗M) ∀X ∈ Γpr(F).

Theorem 6.20. Let S be an embedded symplectic leaf of an orientable Poisson manifold (M,Π) which
admits a flat coupling neighborhood (N

π→ S,F). Let P be the transverse Poisson structure on N of
the leaf. If H1

∂F
= {0}, then the following assertions are equivalent:

(a) the restriction of Π to N is unimodular;

(b) the Poisson manifold (N,P ) is unimodular;

(c) the Poisson fibration (N
π→ S, P ) is unimodular,

Mod(N,Vπ, P ) = 0. (6.46)

Proof. By Theorem 6.17, the assertions of items (a) and (c) are equivalent. The equivalence of (b)
and (c) follows from Proposition 6.3 and the orientability of the symplectic leaf S. �
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Suppose we are given a flat Poisson fiber bundle (π : M → S, P,F) over a symplectic base (S, ω).
Assume that S is an embedded submanifold of M , the inclusion map ι : S ↪→ M is a section of π,
TSF = TS and the vertical Poisson structure P ∈ Γ(∧2V ) vanishes at the points of S. Let γ0 be
the flat Poisson connection on the Poisson fiber bundle (π : M → S, P ) associated to the foliation
F . Denote by horγ0 the corresponding γ0-horizontal lift and by ψ ∈ Γ(∧2TS) the nondegenerated
Poisson tensor of the symplectic manifold S. Then, putting σ0 = π∗ω, we get that formula (6.44)
gives the following flat coupling Poisson tensor on M : Πflat = horγ0(ψ) +P . It is clear that (S, ω) is a
symplectic leaf of Πflat. Moreover, for a given horizontal 1-form µ ∈ Γ(V ◦) on M vanishing along S,
ι∗µ = 0, there exists a neighborhood N of S in M , such that the gauge transformation (6.32), (6.34)
associated to µ is well-defined. Therefore, N is a flat coupling neighborhood of S for the deformed
Poisson structure Π̃flat. We get from Theorem 6.16 that the injectivity condition (6.41) together with
Mod(F) = 0 and (6.46) provides the unimodularity of Π̃flat.

6.8 The generalized Reeb class of a symplectic leaf

Let (M,Π) be a Poisson manifold and S ↪→ M an embedded symplectic leaf. Fix two exponential
maps f , f̃ : E → M from the normal bundle E of S to a tubular neighborhood N of S. Consider the
coupling Poisson structures f∗Π and f̃∗Π and their associated geometric data (P, γ, σ) and (P̃ , γ̃, σ̃).
Recall from Theorem 2.30 that the following relations hold for some g ∈ Aut(E) and Q ∈ Γ(V ◦):

g∗P̃ = P, γ − g∗γ̃ = P ](dQ)[, g∗σ̃ = σ − (dγ1,0Q+ 1
2{Q ∧Q}P ).

Proposition 6.21. Let (N0, ) and (Ñ0,
˜) be the respective de Rham - Casimir complexes. Then,

1. The pullback g∗ : (Ñ0,
˜)→ (N0, ) is a cochain complex isomorphism.

2. If the transverse Poisson structure of S is unimodular, then

(g∗)∗R̃eeb(S) = Reeb(S).

Proof. Since g ∈ Aut(E), g∗ maps horizontal forms to horizontal forms. Moreover, g∗P̃ = P implies
g∗Ñ0 = N0. On the other hand, since the connections γ and g∗γ̃ differ by Hamiltonian vector fields,
it follows that their covariant derivatives coincide on N0. By g ∈ Aut(E), we have

g∗ ◦ ˜ = g∗ ◦ dγ̃1,0 |Ñ0
= dg

∗γ̃
1,0 |g∗Ñ0

◦ g∗ = dγ1,0 |N0 ◦ g∗ = ◦ g∗.

This proves the first part. For the second one, observe that if τ̃ is a fiber-wise volume form preserved
under the Hamiltonian vector fields of P̃ , then τ := g∗τ̃ is preserved under the Hamiltonian vector
fields of P . Furthermore, the corresponding divergence 1-forms satisfy

g∗θγ̃τ̃ ∧ τ = g∗θγ̃τ̃ ∧ g
∗τ̃ = g∗(θγ̃τ̃ ∧ τ̃) = g∗(dγ̃1,0 τ̃) = dg

∗γ̃
1,0 g

∗τ̃ = d
γ−P ](dQ)[

1,0 τ = dγ1,0 τ = θγτ ∧ τ.

Here, in the penultimate step, we have applied the fact that τ is invariant under Ham(E,P ). Therefore,

g∗θγ̃τ̃ = θγτ . Taking into account the first part of this theorem, we get

(g∗)∗R̃eeb(S) = (g∗)∗[θ
γ̃
τ̃ ] = [g∗θγ̃τ̃ ] = [θγτ ] = Reeb(S).

�

Due to this result, there is a well-defined notion of the generalized Reeb class of a symplectic leaf.
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Appendix A

Some algebraic properties of coupling structures

Here, we give a proof of Lemma 2.3.

Lemma A.1. For the Lagrangian subspace D ⊂W, the following assertions are equivalent:

(a) D is V -coupling.

(b) H ⊕ V = W .

(c) V ◦ ⊕A = W ∗.

In this case, Ann(H) = A.

Proof. Suppose that D is a V -coupling Lagrangian subspace of W. If w ∈ H ∩ V , then there exists
α ∈ V ◦ such that w ⊕ α ∈ D ∩ V = {0}. Therefore, w = 0, so H ∩ V = {0}. Moreover, if w ∈ W is
arbitrary, then there exists η ∈ D, v ∈ V , and α ∈ V ◦ such that w⊕ 0 = η + v ⊕ α. This implies that
(w− v)⊕α = η ∈ D, with α ∈ V ◦, so w− v ∈ H. This shows that w ∈ V +H, which proves (a⇒ b).
Conversely, suppose that H ⊕ V = W . If η ∈ D ∩ V, then η = v ⊕ α for some v ∈ V and α ∈ V ◦.
Then, v ∈ H ∩ V = {0}, so η = 0⊕ α. Now, take X ∈ H and β ∈ V ◦ such that X ⊕ β ∈ D. By the
isotropy of D,

0 = 〈X ⊕ β, 0⊕ α〉 = α(X).

Since X ∈ H is arbitrary, we get α ∈ H◦∩V ◦ = {0}. This proves that η = 0. Therefore, D∩V = {0},
proving that D is V -coupling. This completes the proof of (a ⇔ b). The equivalence (a ⇔ c) is
analogous: just change the role between vectors and covectors. Finally, to see that Ann(H) = A when
D is V -coupling, just note that A ⊆ Ann(H) and, from (b) and (c), that

dimA = codimV ◦ = dimV = codimH = dim Ann(H).

�

Lemma A.2. Let (P, γ, σ) be geometric data on (W,V ). Then,

DP,γ,σ = {(P ]µ+X)⊕ (µ− iX σ) | X ∈ Hγ , µ ∈ Aγ} = Graph(P ]|Aγ )⊕Graph(−σ[|Hγ )

is a maximally isotropic subspace of W which is V -coupling.

Proof. Denote D ≡ DP,γ,σ. First we observe that

dimD = dim Graph(P ]|Aγ ) + dim Graph(−σ[|Hγ ) = dimAγ + dimHγ = W,

143
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due to the fact that Aγ = Ann(Hγ). Now, pick η1, η2 ∈ D. Then, there exist µi ∈ Aγ and Xi ∈ Hγ

such that ηi = (P ]µi +Xi)⊕ (µi − iXi σ), i = 1, 2. Hence,

〈η1, η2〉 = − iX1 σ(X2) + µ1(P ]µ2)− iX2 σ(X1) + µ2(P ]µ1) = 0.

Here, we have taken into account that P ]µi ∈ V , iXi σ ∈ V ◦, and the skew-symmetry of P and σ.
This shows that D is maximally isotropic. To see that D is V -coupling, take η ∈ D ∩ V. Then,
η = (P ]µ+X)⊕ (µ− iX σ) for some µ ∈ Aγ , X ∈ Hγ , and η ∈ V ⊕V ◦. Since P ]µ+X ∈ V , it follows
that X ∈ Hγ∩V = ker(γ)∩im(γ); and since µ−iX σ ∈ V ◦, we get that µ ∈ V ◦∩Aγ = ker(γ∗)∩im(γ∗).
Since γ2 = γ, we conclude that ker(γ) ∩ im(γ) = 0, and ker(γ∗) ∩ im(γ∗). Hence, µ = 0, X = 0, and
η = 0. This proves that D ∩ V = 0, so D is V -coupling. �

Lemma A.3. Let D be a V -coupling Lagrangian subspace of W. Then, for each X ∈ H(D,V ) there
exists a unique α ∈ V ◦ such that X ⊕ α ∈ D. Furthermore, there exists a unique σD ∈ ∧2V ◦ such
that X ⊕ (− iX σD) ∈ D for all X ∈ H(D,V ). Similarly, there exists a unique PD ∈ ∧2V such that

P ]Dµ⊕ µ ∈ D for all µ ∈ A(D,V ).

Proof. Let X ∈ H(D,V ) and α, α′ ∈ V ◦ such that X ⊕ α,X ⊕ α′ ∈ D. Then, 0⊕ (α − α′) ∈ D ∩ V.
Since D is V -coupling, it follows that α − α′ = 0. Now, let T : H(D,V ) → V ◦ be the map defined
by the relation X ⊕ T (X) ∈ D. Let us show that T is linear. If X ⊕ T (X), Y ⊕ T (Y ) ∈ D, then
(X+ rY )⊕ (T (X) + rT (Y )) ∈ D for each scalar r, so T (X+ rY ) = T (X) + rT (Y ). Moreover, observe
that T (X)(Y ) = −T (Y )(X). Indeed,

T (X)(Y ) + T (Y )(X) = 〈X ⊕ T (X), Y ⊕ T (Y )〉 = 0,

due to the isotropy of D. Therefore, there exists a unique σD ∈ ∧2V ◦ such that σ[D|H(D,V ) = T , that
is, X ⊕ (− iX σD) ∈ D for all X ∈ H(D,V ). The construction of PD ∈ ∧2V is totally analogous. �

We have shown in Lemma A.2 that, given geometric data (P, γ, σ), there sum of the restricted
graphs is a coupling Lagrangian subbundle DP,γ,σ on (W,V ). Conversely, in Lemma A.3, it was shown
that the triple (PD, γD, σD) is a geometric data on (W,V ), where γD : W →W is the projection over
V along the splitting H(D,V ) ⊕ V = W . It is left to be shown that both constructions define the
one-to-one correspondence of Proposition 2.4.

Proposition A.4. The correspondence between coupling Lagrangian subspaces and geometric data
given by Lemmas A.2 and A.3 is one-to-one.

Proof. Let D be a V -coupling Lagrangian subspace ofW, and consider the geometric data (PD, γD, σD)
defined as in Lemma A.3. Now, consider the V -coupling Lagrangian subspace DPD,γD,σD given as in

Lemma A.2. We have to show that DPD,γD,σD = D. By definition, PD ∈ ∧2V is such that P ]Dµ⊕µ ∈ D
for all µ ∈ A(D,V ). Therefore, Graph(P ]D|A(D,V )) ⊂ D. Similarly, Graph(σ[D|H(D,V )) ⊂ D. Since
DPD,γD,σD is the sum of both graphs, we conclude that DPD,γD,σD ⊆ D. Finally, since DPD,γD,σD

and D are maximally isotropic subspaces, we get DPD,γD,σD = D. Conversely, let (P, γ, σ) be a triple
of geometric data, and let DP,γ,σ be given as in Lemma A.2. Now, consider the triple of geometric
data (P̃ , γ̃, σ̃) defined by DP,γ,σ as in Lemma A.3. We must show that (P̃ , γ̃, σ̃) = (P, γ, σ). First
note that, since DP,γ,σ is the sum of the graphs of σ ∈ ∧2V ◦ and P ∈ ∧2V restricted to Hγ and Aγ ,
respectively, we have that H(DP,γ,σ, V ) = Hγ , so γ̃ = γ. Since σ̃ ∈ ∧2V ◦ is defined in such a way that
X ⊕ (− iX σ̃) ∈ DP,γ,σ for all X ∈ H(DP,γ,σ, V ), we conclude that − iX σ̃ = − iX σ for all X ∈ Hγ . By
Lemma 2.3 (b), we get σ̃ = σ. The proof of P̃ = P is analogous. �



Appendix B

Courant algebroids from 3-forms

B.1 Some useful formulas

Here we state and proof some useful computational facts which are needed in several parts of the text.

Lemma B.1. Let (E, q, [·, ·]E) be a Lie algebroid and Π ∈ Γ(∧2E). Then, for all α, β, θ ∈ Γ(E∗), we
have

[Π,Π]E(α1, α2, α3) = −2
∑

(1,2,3)

Π(α1, Π(α2, α3))− α3[Π]α1,Π
]α2]E .

Proof. By definition of the Schouten bracket,

[Π,Π]E(α1, α2, α3) = − i[Π,Π]E (α1 ∧ α2 ∧ α3) = −2 iΠ iΠ(α1 ∧ α2 ∧ α3) + iΠ iΠ(α1 ∧ α2 ∧ α3).

By straightforward computation, we get

iΠ iΠ(α1 ∧ α2 ∧ α3) =
∑

(1,2,3)

Π( Π(α1, α2), α3)−Π(α1, α2) iΠ α3,

and

iΠ iΠ (α1 ∧ α2 ∧ α3) = −2
∑

(1,2,3)

Π(α1, α2)(iΠ α3) + 2Π(α1, Π(α2, α3))− α3[Π]α1,Π
]α2]E .

Therefore,

[Π,Π]E(α1, α2, α3) = −2
∑

(1,2,3)

Π(α1, Π(α2, α3))− α3[Π]α1,Π
]α2]E .

�

Lemma B.2. Let (E, q, [·, ·]E) be a Lie algebroid, P ∈ Γ(∧2E) a bivector, and ψ ∈ Γ(∧3E∗) a
3-cocycle, ψ = 0. Define

{α, β}P,ψ := LP ]α β − iP ]β α− iP ]β iP ]α ψ, ∀α, β ∈ Γ(E∗).

If X ∈ Γ(E), µ, ν ∈ Γ(E∗) are such that µ(X) = ν(X) = 0, then

iX{µ, ν}P,ψ + P ] iX ψ(µ, ν) = [X,P ]E(µ, ν).
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Proof. By straightforward computations,

[X,P ]E(µ, ν) = LX P (µ, ν) = LX(P (µ, ν))− P (LX µ, ν)− P (µ,LX ν)

= LX(P (µ, ν)) + LX µ(P ]ν)− LX ν(P ]µ)

= LX(P (µ, ν)) + LX(µ(P ]ν))− µ[X,P ]ν]− LX(ν(P ]µ)) + ν[X,P ]µ].

Also, since µ(X) = ν(X) = 0,

iX{µ, ν}P,ψ + P ] iX ψ(µ, ν) = (LP ]µ ν − iP ]ν µ− iP ]ν iP ]µ ψ)(X) + iX ψ(P ]µ, P ]ν)

= LP ]µ ν(X)− iP ]ν µ(X)

= LP ]µ(ν(X))− ν[P ]µ,X]E − LP ]ν(µ(X)) + LX(µ(P ]ν)) + µ[P ]ν,X]E

= −LX(P (µ, ν)) + µ[P ]ν,X]E − ν[P ]µ,X]E .

�

In the case when ψ = 0, we get the following immediate consequence of Lemma B.2.

Lemma B.3. Let (E, q, [·, ·]E) be a Lie algebroid, P ∈ Γ(∧2E) a bivector, and

{α, β}P := LP ]α β − iP ]β α, ∀α, β ∈ Γ(E∗).

If X ∈ Γ(E), µ, ν ∈ Γ(E∗) are such that µ(X) = ν(X) = 0, then

iX{µ, ν}P = [X,P ]E(µ, ν).

Lemma B.4. Let (E, q, [·, ·]E) be a Lie algebroid, a ∈ Γ(E) and Π ∈ Γ(∧2E). Then, for all α, β ∈
Γ(E∗) and a ∈ Γ(E), we have

La(Π(α, β)) = [a,Π]E(α, β) + Π(La α, β) + Π(α,La β), and [a,Π]α]E = Π] La α+ iα[a,Π]E .

Proof. By definition of the Schouten bracket,

[a,Π]E(α, β) = − i[a,Π]E (α ∧ β) = −[La, iΠ]E(α ∧ β)

= La(Π(α, β)) + iΠ(La α ∧ β + α ∧ La β)

= La(Π(α, β))−Π(Laα, β)−Π(α,La β),

which proves the first formula. For the second one, just rewrite:

iα[a,Π]E(β) = [a,Π]E(α, β) = La(Π(α, β))−Π(La α, β)−Π(α,La β)

= La iΠ]α β −Π] La α(β)− iΠ]α La β

= i[a,Π]α]E
β −Π] La α(β).

�
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B.2 The Courant algebroid of a Lie algebroid with background

Here we recall some basic facts of Courant algebroids which we use throughout the text.
Given a Lie algebroid (E, ρ, [, ]) the vector bundle E := E ⊕ E∗ can be endowed with many

structures of Courant algebroid. Consider the bilinear symmetric form on E given by

〈a⊕ α, b⊕ β〉 := β(a) + α(b) (B.1)

and the projection p : E→ TM given by p := ρ ◦ pE , where pE : E ⊕E∗ → E is the projection on the
first factor. Finally, for each 3-cocycle ψ ∈ Γ(∧3E∗) of the exterior derivative , define

Ja⊕ α, b⊕ βKψ := [a, b]⊕ (LEa α− ib β − ib ia ψ). (B.2)

It is a straightforward computation to verify that E acquires a structure of Courant algebroid.

Proposition B.5. Let (E, ρ, [, ]) be a Lie algebroid and ψ ∈ Γ(∧3E∗) be a 3-cocycle of exterior
derivative . Then, Eψ := E⊕E∗ has a natural structure of Courant algebroid, where 〈, 〉, p : E→ TM ,
and J, K := J, Kψ are defined as in above.

Proof. Suppose that η, η′, η1, η2 ∈ Γ(Eψ) are of form η = a⊕α, η′ = a′⊕α′, η1 = a1⊕α1, η2 = a2⊕α2

and f ∈ C∞(M). Let us show that each of the properties (CA1)-(CA3) hold.

(CA1) By the definition of the bracket J, K, we get

Jη, Jη1, η2KK = Ja⊕ α, [a1, a2]⊕ (LEa1
α2 − ia2 α1x− ia2 ia1 ψ)K

= [a, [a1, a2]]⊕ (LEa (LEa1
α2 − ia2 α1 − ia2 ia1 ψ)− i[a1,a2] α− i[a1,a2] ia ψ).

Also, we have

JJη, η1K, η2K =

J[a, a1]⊕ (LEa α1 − ia1 α− ia1 ia ψ), a2 ⊕ α2K =

[[a, a1], a2]⊕ (LE[a,a1] α2 − ia2 (LEa α1 − ia1 α− ia1 ia ψ)− ia2 i[a,a1] ψ) =

[[a, a1], a2]⊕ (LE[a,a1] α2 − ia2 LEa α1 + ia2 ia1 α+ ia2 ia1 ia ψ − ia2 i[a,a1] ψ),

and

Jη1, Jη, η2KK = Ja1 ⊕ α1, [a, a2]⊕ (LEa α2 − ia2 α− ia2 ia ψ)K

= [a1, [a, a2]]⊕ (LEa1
(LEa α2 − ia2 α− ia2 ia ψ)− i[a,a2] α1 − i[a,a2] ia1 ψ)

= [a1, [a, a2]]⊕ (LEa1
LEa α2 − LEa1

ia2 α− i[a,a2] α1 − LEa1
ia2 ia ψ − i[a,a2] ia1 ψ).

Clearly, the Jacobi identity for the Lie bracket of Γ(E) implies that the E-components
of JJη, η1K, η2K + Jη1, Jη, η2KK and Jη, Jη1, η2KK coincide. For E∗-component of JJη, η1K, η2K +
Jη1, Jη, η2KK, the part not involving ψ is

(LE[a,a1] α2 − ia2 LEa α1 + ia2 ia1 α) + (LEa1
LEa α2 − LEa1

ia2 α− i[a,a2] α1) =

(LE[a,a1] + LEa1
LEa )α2 − (ia2 LEa + i[a,a2] )α1 + (ia2 ia1 −LEa1

ia2) α =

(LEa LEa1
)α2 − (LEa ia2 )α1 + (ia2 ia1 + ia2 ia1 − LEa1

ia2) α =

LEa (LEa1
α2 − ia2 α1) + (ia2 LEa1

−LEa1
ia2) α =

LEa (LEa1
α2 − ia2 α1)− i[a1,a2] α,
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which coincides with the E∗-component of Jη, Jη1, η2KK not involving the 3-cocycle ψ. To complete
the proof, we need to verify

ia2 ia1 ia ψ − ia2 i[a,a1] ψ − LEa1
ia2 ia ψ − i[a,a2] ia1 ψ = −LEa ia2 ia1 ψ − i[a1,a2] ia ψ

which is equivalent to

ia2 ia1 ia ψ − ia2 i[a,a1] ψ − ia2 LEa1
ia ψ + ia2 LEa ia1 ψ = 0.

Adding the first to the third term and the second term to the fourth, we get

− ia2 ia1 ia ψ + ia2 ia1 LEa ψ = 0.

Finally, the above sum is just ia2 ia1 ia ψ, which is zero because of ψ = 0.

(CA2) By definition of the bracket J, K,

〈Jη, η1K, η2〉 = 〈[a, a1]⊕ (LEa α1 − ia1 dE α− ia1 ia ψ), a2 ⊕ α2〉
= α2([a, a1]) + (LEa α1 − ia1 dE α− ia1 ia ψ)(a2)

= α2([a, a1]) + LEa α1(a2)− ia2 ia1 dE α− ia2 ia1 ia ψ

= α2([a, a1])− α1([a, a2]) + LEa (α1(a2))− ia2 ia1 dE α− ia2 ia1 ia ψ.

Because of the symmetry of 〈, 〉, an analogous computation leads to

〈η1, Jη, η2K〉 = 〈Jη, η2K, η1〉 = α1([a, a2])− α2([a, a1]) + LEa (α2(a1))− ia1 ia2 dE α− ia1 ia2 ia ψ.

Adding up both equations and cancelling out by the skew-symmetry of dE α and ia ψ, we get

〈Jη, η1K, η2〉+ 〈η1, Jη, η2K〉 = LEa (α1(a2)) + LEa (α2(a1)) = LEa 〈η1, η2〉 = Lp(η)〈η1, η2〉.

(CA3) Note that

Jη2, η2K = [a2, a2]⊕ (LEa2
α2 − ia2 α2 − ia2 ia2 ψ) = 0⊕ ia2 α2 = 0⊕ 1

2 〈η2, η2〉.

Then,

〈η1, Jη2, η2K〉 = 〈a1 ⊕ α1, 0⊕ 1
2 〈η2, η2〉 = 1

2 〈η2, η2〉(a1) = 1
2 Lq(a1)〈η2, η2〉 = 1

2 Lp(η1)〈η2, η2〉.

�



Appendix C

Bigraded models on algebraic Lie algebroids

Following [40], let R be a ring, C a commutative R-algebra, and EndR C the C -module of R-linear
endomorphisms of C . We say that X ∈ EndR C is a derivation if the Leibniz rule

X(f · g) = X(f) · g + f ·X(g)

is satisfied for all f, g ∈ C . It is clear that the set DerR C of R-linear derivations is a Lie subalgebra
of (EndR C , [·, ·]), where the bracket denotes the commutator [X,Y ] := X ◦ Y − Y ◦X.

Recall that a Lie algebroid over C is a triple (A , q, [·, ·]A ) consisting of a faithful C -module A ,
together with a Lie bracket [·, ·]A on A , and a C -module morphism q : A → EndR C , compatible
with the Lie bracket by

[a, fb]A = f [a, b]A + q(a)(f)b,

for all f ∈ C , a, b ∈ A . The C -module A is called the total space, and the C -module morphism
q : A → EndR C is called the anchor. The previous formula is called the Leibniz rule. By the
faithfulness of A and the Leibniz rule, straightforward computations show that q is a representation
of A on C by derivations, that is, q(a) ∈ DerR C , and q[a, b]A = [q(a), q(b)]A for all a, b ∈ A .

Example C.1. A well-known example of a Lie algebroid over a commutative R-algebra C is the Lie
algebroid of derivations, (A := DerR C , IdA , [·, ·]), where the anchor is precisely the identity map, and
[·, ·] denotes the commutator of derivations. H

Let us consider the dual of A as a C -module, A ∗ := HomC (A ,C ). We now assume that the
following condition holds, ⋂

α∈A ∗

ker(α) = {0}, (C.1)

which is equivalent to say that every element a ∈ A is uniquely determined by the values α(a) ∈ C ,
where α runs over all A ∗. In other words, the canonical map A 3 a 7→ ia ∈ HomC (A ∗,C ), given on
each α ∈ A ∗ by ia α := α(a), is injective.

For each k ∈ Z, let Ck be the C -module of C -multilinear skew-symmetric maps

α : A × · · · ×A︸ ︷︷ ︸
k times

→ C .

In particular, C1 = A ∗ is the dual C -module of A , C0 = C , and Ck = {0} for k < 0. Then,
C• :=

⊕
k∈Z Ck is a graded commutative and associative C -algebra with the exterior product ∧ defined

as usual.
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The Lie algebroid structure of A naturally induces a derivation on C, which is a coboundary
operator on C of degree 1, ∈ Der1

C C. Indeed, for each α ∈ Ck, α ∈ Ck+1 is given by the Koszul’s
formula

α(a1, . . . , ak+1) :=
∑

σ∈S(1,k+1)

sgn(σ) q(aσ1)(α(aσ2 , . . . , aσk)) (C.2)

−
∑

σ∈S(2,k)

sgn(σ)α([aσ1 , aσ2 ]A , aσ3 , . . . , aσk+1
),

where a1, . . . , ak+1 ∈ A . Here, S(i,j) denotes the set of all shuffle permutations σ ∈ Si+j , with
σ1 < · · · < σi, and σi+1 < · · · < σi+j . A similar notation applies for S(i,j,k). Then, the Lie algebroid
cohomology of A is defined by H•(A ) := H•(C, ).

To see that 2 = 0, fix α ∈ Ck and a1, . . . , ak+2 ∈ A . Then, a straightforward computation leads

2α(a1, . . . , ak+2) =
∑

σ∈S(1,1,k)

sgn(σ) q(aσ1)(q(aσ2)(α(aσ3 , . . . , aσk+2
)))

−
∑

σ∈S(1,2,k−1)

sgn(σ) q(aσ1)(α([aσ1 , aσ2 ]A , aσ3 . . . , aσk+2
))

−
∑

σ∈S(2,k)

sgn(σ) q[aσ1 , aσ2 ]A (α(aσ3 , . . . , aσk+2
))

+
∑

σ∈S(1,2,k−1)

sgn(σ) q(aσ1)(α([aσ1 , aσ2 ]A , aσ3 . . . , aσk+2
))

+
∑

σ∈S(2,1,k−1)

sgn(σ)α([[aσ1 , aσ2 ]A , aσ3 ]A , aσ4 , . . . , aσk+2
)

+
∑

σ∈S(2,2,k−2)

sgn(σ)α([aσ1 , aσ2 ]A , [aσ3 , aσ4 ]A , aσ5 . . . , aσk+2
).

Clearly, the second and fourth sums cancel out with each other. Moreover, the last sum is identically
zero, due to the skew-symmetry of α. Since q is a representation, the first and third sums also cancel
out with each other. Finally, the fifth sum is zero due to the Jacobi identity of [·, ·]A . A similar
computation shows that ∈ Der1

C C. Furthermore, condition (C.1) implies that the coboundary
operator is determined by a unique Lie algebroid structure on A . Indeed, the anchor map q and
the Lie bracket can be expressed in terms of in (C.2) for k = 0 and k = 1, respectively.

Now, recall that for each a ∈ A , the insertion ia : C → C, given by

ia α(a1, . . . , al−1) := α(a, a1, . . . , al−1), α ∈ Cl, ai ∈ A ,

is a graded derivation of degree −1, ia ∈ Der−1
C C. More generally, if K : A × · · · × A → A is a

k-linear (over C ) skew-symmetric map, then iK ∈ Derk−1
C C, where

iK α(a1, . . . , ak+l−1) :=
∑

σ∈S(k,l−1)

sgn(σ)α(K(aσ1 , . . . , aσk), aσk+1
, . . . , aσk+l−1

), α ∈ Cl, ai ∈ A .

Hence, LK := [iK , ] is a graded derivation of degree k, LK ∈ DerkC C. In particular, if K = IdA is the
identity map on A , then iIdA

α = kα for all α ∈ Ck, and hence, LIdA
= .
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Bigrading on C -modules. Let A be a module over the commutative R-algebra C . An
endomorphism p ∈ EndC A is said to be a connection on A if it is a projection map, p2 = p. Let us
define the p-horizontal and p-vertical submodules of A byHp := ker(p) and Vp := im(p). We will drop
the superscript p when the choice of the connection is clear. Observe that A = H⊕V. Furthermore,
the transpose (dual) map p∗ ∈ EndC A ∗ is a projection on A ∗ such that ker(p∗) = Ann(V) and
im(p∗) = Ann(H). In particular, A ∗ = Ann(V)⊕Ann(H).

Remark C.2. Note that the role of the horizontal and vertical submodules Hp and Vp is symmetric.
In fact, if p is a connection, then IdA −p is another connection such that HIdA −p = Vp and VIdA − p =
Hp.

Let us extend the bigrading of C1 = A ∗ to the whole algebra C. We define

Cp,q := {α ∈ Cp+q | α(a1, . . . , ak−s, b1, . . . , bs) = 0 ∀s 6= q, ai ∈ H, bj ∈ V}

as the submodule of C -linear skew-symmetric maps of bidegree (p, q). It is straightforward to check
that Cp,q ∧ Cp′,q′ ⊆ Cp+p′,q+q′ for all p, p′, q, q′ ∈ Z. On the other hand, since p : C → C is C -linear,
it induces the derivation ip ∈ Der0

C C of degree 0 in C. The elements of Cp,q turn out to be the
q-eigenvectors of ip on Cp+q, ip α = qα if α ∈ Cp,q (equivalently, iIdA − p α = pα). The converse is also
true if C is free as Z-module.

Clearly, Ci,j = {0} whenever i < 0 or j < 0, and Cp,q ∩ Cp′,q′ = {0} whenever p 6= p′ or q 6= q′.
Furthermore,

Lemma C.3. For each k ∈ Z, one has

Ck =
⊕
p+q=k

Cp,q.

Proof. For the purposes of this proof, let us denote p0 := IdA −p, and p1 := p. Now, for each
k, p, q ∈ Z, denote by Ak := {0, 1}k the set sequences of length k consisting of 0’s and 1’s, and by Ap,q
the subset of Ap+q which take the value 0 exactly p times, and hence, the value 1 exactly q times. Now,
fix α ∈ Ck. Since p0 + p1 = IdA , and

⋃
p+q=k Ap,q = Ak, it is easy to see that, for any a1, . . . , ak ∈ A ,

α(a1, . . . , ak) =
∑
p+q=k

∑
s∈Ap,q

α(ps1 a1, . . . ,psk ak). (C.3)

Moreover, it is straightforward to verify that, for each p, q ∈ Z with p + q = k, the map αp,q :
A × · · · ×A → C , given on a1, . . . , ak ∈ A by

αp,q(a1, . . . , ak) :=
∑
s∈Ap,q

α(ps1 a1, . . . ,psk ak),

is C -multilinear, skew-symmetric, and has bidegree (p, q), αp,q ∈ Cp,q. By (C.3), one has α =∑
p+q=k αp,q, as desired. �

Finally, consider the C -submodule Derr,sR C ⊆ Derr+sR C consisting of the R-linear derivations D
of bidegree (r, s), that is, such that D(Cp,q) ⊆ Cp+r,q+s for all p, q ∈ Z. It is straightforward to



152 C. BIGRADED MODELS ON ALGEBRAIC LIE ALGEBROIDS

check that [ip, D] = sD and, equivalently, [iIdA − p, D] = rD, for all D ∈ Derr,sR C. Here, [D,D′] :=

D ◦D′ − (−1)|D||D
′|D′ ◦D denotes the graded commutator of endomorphisms. Finally, we denote by

D̂er
k

RC :=
⊕
r+s=k

Derr,sR C

the set of graded derivations which admit a bigraded decomposition. For each D ∈ D̂er
k

RC, the
corresponding element in Derr,sR C will be denoted by Dp

r,s.

Bigrading on Lie algebroids. Now, assume that A is the total space of a Lie algebroid
(A , q, [·, ·]A ) over the commutative R-algebra and free Z-module C . Let us fix a connection p on
A , p2 = p. Because of the Leibniz rule on the Lie algebroid, and the skew-symmetry of [·, ·]A , the
maps Rp, Sp : C × C → A given by

Rp(a, b) = p[(IdA −p)a, (IdA −p)b]A , Sp(a, b) = (IdA −p)[p a,p b]A

are C -bilinear and skew-symmetric. It is clear that H := ker(p) and V := im(p) are Lie R-subalgebras
of A if and only if Rp = 0 and Sp = 0, respectively. [35]. Thus, Rp and Sp are said to be the curvature
and co-curvature of p, respectively.

Proposition C.4. Consider the cochain complex (C, ) associated with (A , q, [·, ·]A ). For any
connection p on A , one has

= p
−1,2 + p

0,1 + p
1,0 + p

2,−1.

Furthermore,

p
−1,2 = − iSp , p

0,1 = Lp +2 iSp − iRp , p
1,0 = LIdA − p +2 iRp − iSp , and p

2,−1 = − iRp .

Proof. To prove the first part, we have to check that i,j = 0 whenever i < −1 or j < −1. Fix
α ∈ Cp,q, a1, . . . , ap+i ∈ H and ap+i+1, . . . , ap+q+1 ∈ V. By definition,

i,jα(a1, . . . , ap+q+1) =
∑

σ∈S(1,k+1)

sgn(σ) q(aσ1)(α(aσ2 , . . . , aσk))

−
∑

σ∈S(2,k)

sgn(σ)α([aσ1 , aσ2 ]A , aσ3 , . . . , aσk+1
).

If i < 0 (resp. j < 0), then on every term in the first sum α has less (resp. more) than p arguments
belonging to H. So, it follows that the first sum is zero whenever i or j is negative. A similar argument
shows that the second sum is zero whenever i < −1 or j < −1. This proves the first part. Now, let us
show, for i = 2, j = −1, that 2,−1 = − iRp . To do so, it suffices to prove that

α([aσ1 , aσ2 ]A , aσ3 , . . . , aσk+1
) = α(p[(IdA −p)aσ1 , (IdA −p)aσ2 ]A , aσ3 , . . . , aσk+1

)

holds for each shuffle permutation σ. In the case when σ2 ≤ p + 2, such identity follows from
aσ1 , aσ2 ∈ H and α ∈ Cp,q. If σ2 > p + 2, then both sides are identically zero. The proof of

p
−1,2 = − iSp is analogous. Finally, taking into account the properties of [ip, ·], we get

Lp = [ip, ] = [ip,
p
−1,2] + [ip,

p
0,1] + [ip,

p
1,0] + [ip,

p
2,−1]

= 2 p
−1,2 + p

0,1 −
p
2,−1 = −2 iSp + p

0,1 + iRp .

This proves p
0,1 = Lp +2 iSp − iRp . The proof of p

1,0 = LIdA − p +2 iRp − iSp is analogous. �
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Remark C.5. If A is a finitely generated and projective C -module, then Ck = ∧kA ∗. In this case,
D̂erRC = DerR C. Furthermore, D = D−1,2 + D0,1 + D1,0 + D2,−1 for any D ∈ Der1

R C. Indeed, the
fact that Di,j = 0 whenever i < −2 or j < −2, follows from the well-known property that the only
derivation of ∧kA ∗ vanishing on C0 = C and C1 = A ∗ is the zero derivation. Moreover, D2,−1 and
D−1,2 are also of the form iK and iL for some K ∈ C2,0 ⊗A and L ∈ C0,2 ⊗A . Similar formulas can
be derived for D1,0 and D0,1.

The following fact can be found in [26, Section 5] for the case of connections of zero co-curvature
on the tangent Lie algebroid of a manifold.

Corollary C.6. Let p be a connection on the Lie algebroid (A , q, [·, ·]A ). If the vertical submodule V
is involutive, then the bigraded components of the exterior differential satisfy

p
−1,2 = 0, p

1,0 = LIdA − p +2 iRp , p
0,1 = Lp− iRp , p

2,−1 = − iRp , ( p
1,0)2 = LRp .

In particular, if H is also an involutive submodule, then p
2,−1 = 0, and p

1,0 is a coboundary.

Proof. Recall that V is involutive if and only if Sp = 0. By Proposition C.4, we get p
−1,2 = 0. So, it

remains to prove that ( p
1,0)2 = LRp . Since = p

1,0 + p
0,1 + p

2,−1 and ( p)2 = 0, it follows that

( p
1,0)2 = −( p

0,1
p
2,−1 + p

0,1
p
2,−1) = −[ p

0,1,
p
2,−1] = −[ , p

2,−1] = [ , iRp ] = LRp .

Thus, if H is involutive, then Rp = 0, which implies that p
2,−1 = 0, and ( p

1,0)2 = 0. �

Corollary C.7. Let p be a connection on the Lie algebroid (A , q, [·, ·]A ) such that the vertical
submodule satisfy the following properties:

1. The isotropy algebra contains V: V ⊆ ker(q).

2. The vertical submodule is an ideal: [V,A ]A ⊆ V.

3. The vertical submodule is an Abelian Lie subalgebra of A : [V,V]A = {0}.

Then, p
−1,2 = 0, and p

0,1 = 0.

Proof. Since [V,V]A = {0}, it is clear that V is involutive, so p
−1,2 = 0. It is left to show that p

0,1 = 0.
Fix α ∈ Cp,q, a1, . . . , ap ∈ H, and ap+1, . . . , ap+q+1 ∈ V. By definition,

p
0,1α(a1, . . . , ap+q+1) =

∑
σ∈S(1,k+1)

sgn(σ) q(aσ1)(α(aσ2 , . . . , aσp+q+1))

−
∑

σ∈S(2,k)

sgn(σ)α([aσ1 , aσ2 ]A , aσ3 , . . . , aσp+q+1).

If σ ∈ S(1,k+1) is such that σ1 ≥ p + 1, then aσ1 ∈ V ⊆ ker(q), so q(aσ1) = 0. If, on the contrary,
σ ∈ S(1,k+1) satisfies σ1 ≤ p, then aσ1 ∈ H, so the sequence (aσ2 , . . . , aσp+q+1) consists of p−1 elements
of H and q + 1 elements of V. Since α ∈ Cp,q, we get α(aσ2 , . . . , aσp+q+1) = 0. In any case, every term
of the first sum is zero. For the second sum, we consider the following cases:

• If σ1 ≥ p+ 1, then aσ1 , aσ2 ∈ V, and hence [aσ1 , aσ2 ]A = 0.
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• If σ1 ≤ p and σ2 ≥ p+1, then aσ1 ∈ H, and aσ2 ∈ V. Since V is an ideal, one has [aσ1 , aσ2 ]A ∈ V.
Thus, ([aσ1 , aσ2 ]A , aσ3 , . . . , aσp+q+1) consists of p− 1 elements in H and q + 1 elements in V.

• If σ2 ≤ p, then aσ1 , aσ2 ∈ H, and hence the sequence ([aσ1 , aσ2 ]A , aσ3 , . . . , aσp+q+1) has as least
q + 1 elements in V.

Since α ∈ Cp,q, in any case we get α([aσ1 , aσ2 ]A , aσ3 , . . . , aσp+q+1) = 0. �

Corollary C.8. Let p be a connection on the Lie algebroid (A , q, [·, ·]A ) such that the vertical
submodule V is involutive, and the horizontal submodule satisfy the following properties:

1. The isotropy algebra contains H: H ⊆ ker(q).

2. The horizontal submodule is an ideal: [H,A ]A ⊆ H.

3. The horizontal submodule is an Abelian Lie subalgebra of A : [H,H]A = {0}.

Then, = p
0,1.

Proof. By interchanging the role of H and V, we conclude from Corollary C.7 that p
2,−1 = 0 and

p
1,0 = 0. Furthermore, the involutivity of V implies that p

−1,2 = 0. �
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[35] Kolář, I., Michor, P. W., and Slovák, J. Natural operations in differential geometry.
Springer-Verlag, Berlin, 1993.

[36] Kosmann-Schwarzbach, Y. Modular vector fields and Batalin - Vilkovisky algebras. In Poisson
geometry (Warsaw, 1998), P. U. Janusz Grabowski, Ed., vol. 51 of Banach Center Publ.

[37] Kosmann-Schwarzbach, Y. Quasi, twisted, and all that. . .in Poisson geometry and Lie
algebroid theory. In The breadth of symplectic and Poisson geometry, vol. 232 of Progr. Math.
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Physique théorique 53, 1 (1990), 35–81.

[41] Koszul, J.-L. Crochet de Schouten - Nijenhuis et cohomologie. In Élie Cartan et les
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[74] Vorob’ev, Y. M., and Karasëv, M. V. Poisson manifolds and the Schouten bracket.
Funktsional. Anal. i Prilozhen. 22, 1 (1988), 1–11, 96.
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