

UNIVERSIDAD DE SONORA

Escuela de Altos Estudios

UNA DEMOSTRACION PROBABILISTA DEL TEOREMA DE RADON-NIKODYM

TESIS

Que para obtener el Título de

LICENCIADO EN MATEMATICAS

BIBLIOTE CA DE CIENCIAS EXACTAS Y NATURALES Y NATURALES

Presenta

Fernando Luque Vásquez

Hermosillo, Sonora

Universidad de Sonora

Repositorio Institucional UNISON

Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess

A la memoria de mi Madre,

A mi Padre,

A todos mis Hermanos,

A Eva...

INDICE

		Pag.
0.	Introducción	1
1.	El Teorema de Radon-Nikodym y la Esperanza Condicional.	3
11.	El Teorema de Representación de Riesz y la Esperanza Condicional	15
111.	Versión Probabilista del Teorema de Radon-Nikodym.	27
IV.	Referencias Bibliográficas	36

INTRODUCCION

El teorema de Radon-Nikodym juega un papel fundamental en la teoria moderna de probabilidad; un papel que le asignó Kolmogorov en su histórico libro "Foundations of the Theory of Probability" (7)*. El teorme tal y como lo usó Kolmogorov permite definir la esperanza condicional en su forma más general; sin embargo, la definición es puramente descriptiva y no es claro el enlace que existe entre la definición de esperanza condicional en el caso elemental, donde se tiene una definición constructiva, y el caso general, donde la esperanza condicional es una derivada de Radon-Nikodym. Este "punto obscuro" se debe principalmente al hecho de utilizar el teorema como un resultado ajeno a la teoría de probabilidad.

Con el fin de esclarecer el enlace entre la definición constructiva y la definición descriptiva, daremos una versión probabilista del teorema de Radon-Nikodym, obteniendo así una definición constructiva de la esperanza condicional en su forma más general.

En el Capítulo I damos una demostración del teorema de Radon-Niko dym (su versión en teoría de la medida) y desarrollamos el concepto de "condicionalidad" hasta llegar a la definición de esperanza condicional em su forma más general.

En el Capítulo II, con el fin de mostrar que el teorema de Radon-Nikodym no es necesario para definir esperanza condicional, obtenemos la definición siguiendo un camino distinto, utilizando el teorema de representación de Riesz y demostrando la equivalencia entre las definiciones obtenidas.

En el Capítulo III damos la versión probabilista del teorema de -Radon-Nikodym y algunos ejemplos ilustrativos.

(*) Los números (1), (2),... se refieren a las referencias bibliográficas.

Debo agradecer a los Profesores Enrique Valle Flores, Fernando Avila Murillo y Marco Antonio Valencia, por sus consejos y sugerencias en el desarrollo de este trabajo.

E B LI O T E C.

En el desarrollo de este trabajo, consideremos fijo un espacio medible (Ω, Ω) , donde Ω es un conjunto abstracto y Ω es un σ -campo de conjuntos de Ω . En Ω definiremos una medida; es decir, una función $\mu: \Omega \to \mathbb{R}$ tal que:

Notal: $\sum_{i=1}^{\infty} A_i$ significa $\bigcup_{i=1}^{\infty} A_i$ cuando $A_i \cap A_j = \emptyset$ si $i \neq j$. Se llama --- unión ajena.

Si $\mu A < \infty$ \forall $A \in \mathbb{Q}$, se dice que μ es finita. Si todo conjunto de \mathbb{Q} es unión numerable de conjuntos en \mathbb{Q} para los cuales μ es finita, se dice que μ es σ -finita.

1-1 <u>Definición</u>.- Sea X una función medible cuya integral existe (posiblemente infinita). La integral indefinida Ψ sobre Q está dada por:

$$\varphi(A) = \int_A X d\mu = \int_A X \int_A d\mu.$$

Nota 2: El indicador (o función indicatriz) de A, es la función característica de A definida por:

$$I_{A}(\omega) = \begin{cases} 1 & \text{si } \omega \in A \\ 0 & \text{si } \omega \notin A \end{cases}$$

1-2 <u>Definición</u>.- Una función conjuntista ψ definida en Θ se dice μ -continua si $\mu A=0$ implica $\psi(A)=0$.

1-3 Proposición. - La integral indefinida de una función medible es una función μ -continua.

<u>Demostración</u>. - Sea X= I_A y sea B € Q tal que µB=0

Se tiene la afirmación para indicadores de conjuntos medibles. En el caso en que X es una función simple*, es decir, $X = \sum_{j=1}^{\infty} x_j A_j$, se tiene:

$$\varphi(B) = \int_{B} \left(\sum_{j=1}^{n} x_{j} I_{A_{j}} \right) d\mu = \sum_{j=1}^{n} (x_{j}) I_{A_{j}B} d\mu = 0$$

Si X es una función medible positiva, existe una sucesión $\{x_n\}$ de funciones siples tales que $x_n \uparrow x$. Aplicando el teorema de la convergencia monótona obtenemos:

En el caso general, descomponemos X en su parte positiva y en su parte - negativa: $X = X^{+} - X^{-}y$ obtenemos:

1-4 <u>Proposición</u>. - La integral indefinida es σ -aditiva; es decir, $\Psi(\sum_{i=1}^{n} A_i) = \sum_{i=1}^{n} \varphi(A_i)$

Demostración:

$$\Psi(\sum_{j=1}^{\infty}A_{j}) = \int_{\sum_{j=1}^{\infty}A_{j}}^{\infty}Xd\mu = \int_{\sum_{j=1}^{\infty}A_{j}}^{\infty}Jd\mu = \int_{\sum_{j=1}^{\infty}A_{j}}^{\infty}Jd\mu = \frac{1}{2}(X\sum_{j=1}^{\infty}J_{A_{j}})d\mu = \frac{1}{2$$

$$\int_{\frac{1}{2}}^{\infty} (X I_{A_{1}}) d\mu = \sum_{j=1}^{\infty} \int (X I_{A_{1}}) d\mu = \sum_{j=1}^{\infty} \int_{A_{1}}^{\infty} X d\mu = \sum_{j=1}^{\infty} \varphi(A_{1}).$$

1-5 <u>Proposición</u>. Si X es una función medible integrable (su integral es finita) estonces es finita c.d. y la integral indefinida es finita. Si X no es integrable, pero no obstante es finita c.d. y μ es σ -finita, entonces la integral indefinida es σ -finita.

Demostraremos la primera parte para el caso en que X es una función medible simple. La extensión se sigue de la misma manera como se hizo - en (1-3).

(*) $X:\Omega\to\mathbb{R}$ simple en este trabajo significa simple y medible. Es decir, $X(\Omega)$ es finito y $X^{-1}(B)\in\Omega$ si $B\subset\mathbb{R}$.

$$X = \sum_{j=1}^{n} x_j I_{A_j} \quad ; \quad \int X J \mu = \sum_{j=1}^{n} x_j \mu A_j < \infty \quad \Rightarrow x_j < \infty \quad \text{c.d.}$$

Para la segunda parte, descomponemos Ω en conjuntos A_n de medida - finita y obtenemos que:

y cada termino de la doble suma es finito.

1-6 <u>Definición</u>.- Una función conjuntista Ψ_s definida sobre Q, se dice que es μ -singular, si se anula fuera de un conjunto μ -nulo, es decir, si existe un conjunto μ -nulo N tal que

- 1-7 <u>Definición</u>. Una medida con signo es una función conjuntista $\psi: \mathbb{Q} \to \mathbb{R}$ tal que
- 1) 4 toma a lo más uno de los valores:
- 2) 4(\$)=0
- 3) 4(\$\frac{\infty}{n} An) = \frac{\infty}{n} \q(An) , An \in \mathcal{Q} .
- 1-8 <u>Proposición</u>. Una función conjuntista es una medida con signo si y sólo si es la diferencia de dos medidas, de las cuales al menos una es finita.

Demostración: Sea Ψ una medida con signo y supongamos que toma a lo más el valor $+\infty$ (queda excluído $-\infty$). Sean μ_1 y μ_2 tales que:

Es claro que p. y pr son medidas, pr es finita y

Reciprocamente, sean $\mu_1 y \ \mu_2$ dos medidas en Θ con $\mu_2 < \infty$. Entonces, la función conjuntista $\Psi = \mu_1 - \mu_2$ es tal que:

i) Ψ toma a lo más el valor $+\infty$ ii) $\Psi(\emptyset)=0$ (por ser $\mu_1 y$ medidas). iii) $\Psi(\Sigma A_n)=\mu_1(\Sigma A_n)-\mu_2(\Sigma A_n)=\sum \mu_1 A_n-\sum \mu_2 A_n=$

1-9 Teorema (descomposición de Hahn).- Sea Ψ una medida con signo definida en Θ . Entonces existe un conjunto $D\in\Theta$ tal que para todo $A\in\Theta$.

La demostración puede verse en (1) o (3).

1-10 <u>Teorema</u> (descomposición de Lebesque). Si la medida μ y la función σ -aditiva Ψ definidas en Q son σ -finitas, entonces existe una y-sólo una descomposición de Ψ en una función conjuntista μ -continua y σ -aditiva Ψ y una función conjuntista μ -singular y σ -aditiva Ψ

Además Ψ_e es la integral indefinida de una función medible finita X determinada $\mu\text{-c.d.}$ A X se le llama derivada de Radon-Nikodym: $\frac{d\Psi}{d\mu}$

<u>Demostración</u>: Puesto que Ω puede ser considerado como una unión numerable de conjuntos medibles ajenos para los cuales φ y φ son finitas, su pondremos que φ y φ son medidas finitas.

Probaremos primero la unicidad: Supóngase que existen dos descomposiciones:

entonces $\Psi_c - \Psi_c' = \Psi_s' - \Psi_s = 0$ ya que $\Psi_c - \Psi_c'$ es una función ψ -conti-nua y $4'_s$ - 4_s es una función μ -singular.

Para ver que el integrando está definido p-c.d., supóngase que para cada A∈Q,

Esto implica que X = X' c.d., ya que si $\mu B = \mu [X - X' > \in] > 0$ enton ces $\int (x-x')d\mu>0$. Así, las afirmaciones de unicidad se cumplen si probamos la existencia.

Sea o la clase de todas las funciones integrables no negativas X cuyas integrales indefinidas están acotadas por Ψ :

 Φ es no vacío puesto que la función medible $X\equiv 0$ pertenece a Φ . E-xiste una sucesión $\{X_n\}$ contenida en Φ tal que

Sea $X'_n = \sup_{k \le n} X_k$, de donde $0 \le X_n' \uparrow Y = \sup_n X_n$.

$$A_k = [X_k = X_n]$$
 para n bijo y sea
 $A_i = A_i$, $A_k = A_i ... A_{k-1} A_k$

Así,
$$\sum_{R=1}^{\infty} A'_{R} = \sum_{R=1}^{\infty} A_{R} = \Omega$$
 y para cada $A \in \Omega$,

$$\int_{A} X'_{n} d\mu = \sum_{R=1}^{M} \int_{AA'_{R}} X'_{n} d\mu = \sum_{R=1}^{M} \int_{AA'_{R}} X_{R} d\mu \leqslant \sum_{R=1}^{M} \Psi(AA'_{R}) = \Psi(A)$$

Haciendo $n \rightarrow \infty$ y aplicando el teorema de convergencia monótona, tenemos:

Por lo tanto, Y es un elemnto maximal de ϕ . Esta propiedad nos ayudarå para demostrar que

donde 4 es la integral indefinida de 4, es p-singular.

Sea D_n^+ D_n^c una descomposición de Hahn para la función conjuntista finita y σ -aditiva

entonces:

Sea $D = \bigcap_{n=1}^{\infty} D_n$ y entonces $D^c = \bigcup_{n=1}^{\infty} D_n^c$. Así, para cada A y todo n,

Haciendo $n \rightarrow \infty$ se sigue que $\Psi_s(AD) = 0$ y por lo tanto $\Psi_s(A) = \Psi_s(AD^c)$.

Puesto que

se sigue que

Así que

Pero esto contradice el hecho demostrado que

a menos que $\mu D_n^c=0$. Por lo tanto, todos los conjuntos D_n^c son $\mu-n\underline{u}$ los y así lo es D^c . Puesto que $\Psi_s(AD)=0$ \forall A, se concluye que Ψ_s es $\mu-singular$. //

En el caso particular de una función ψ μ -continua, el resultado anterior se reduce a:

1-11 TEOREMA DE RADON-NIKODYM. - Si, sobre Q, la medida μ y la función conjuntista σ -aditiva ψ son σ -finitas y ψ es μ -continua, entonces ψ es la integral indefinida de una función finita determinada μ -c.d.

La integral indefinida de una función medible X no necesariamente finita es σ -aditiva y μ -continua, pero no necesariamente σ -finita. - El siguiente teorema provee una extensión del teorema 1-11.

1-12 <u>Teorema</u>. El teorema de Radon-Nikodym resulta válido si la finitud de X y la σ -finitud de φ se suprimen sumultáneamente.

Demostración: Sea μ una medida finita, ψ una medida μ -continua en Q, Q la clase de todos los conjuntos medibles tales que ψ es G-finita - en Q y sea

Existe una sucesión $\{B_n\}$, $B_n \in B$ tal que $S = \lim_{n \to \infty} \mu B_n$

y por lo tanto,

B=UBneB y MB=S

Si existe C ∈ {BCA, A∈Q}tal que 0 < Q(c) < ∞, entonces:

Por lo tanto, mientras Ψ es σ -finita en $\{BA, A \in \Omega\}$, Ψ puede tomar-sólo los valores 0 o ∞ en $\{B^CA, A \in \Omega\}$.

Además, es imposible tener

 $\mu c > 0$ $y \varphi(c) = 0$

porque entonces $(B + C) \in B$ y tendríamos, como antes, S > S. Puesto que Ψ es μ -continua, también es imposible tener

 $\mu c = 0$ y $\varphi(c) > 0$.

Así, para cada $C \in \{B^CA, A \in \Omega\}$ nos quedan dos posibilidades:

 $\mu c > 0$ y $\psi(c) = \infty$

 $\mu c = 0$ y $\phi(c) = 0$

En otras palabras, Ψ en $\{B^CA, A\in Q\}$ es la integral indefinida de una función $X=\infty$ determinada $\mu\text{-c.d.}$ y por otro lado, por el teorema --- 1-11, Ψ en $\{BA, A\in Q\}$ es la integral indefinida de una función X en -B determinada $\mu\text{-c.d.}$ Estos valores de X en B y B^C la determinan en Ω y para cada $A\in Q$,

CONDICIONALIDAD

Sea (Ω , Θ , P) un espacio de probabilidad, Θ \subset Θ un σ -campo.

Definiremos probabilidad y esperanza condicionales empezando por el caso más simple: Probabilidad del evento A dado el evento B, esperanza -- condicional de una variable aleatoria X dado el evento B; luego el caso "dado el σ -campo σ ", cuando σ es el σ -campo generado por una partición numerable de σ y por áltimo el caso general (σ -campo de σ).

1-13 <u>Pefinición</u>.- La probabilidad condicional de un evento A dado un evento B no nulo, denotada por $P_{\rm B}A$, se define por la relación

$$P_BA = \frac{P(AB)}{P(B)}$$
, $PB \neq 0$

 P_{B} es una medida de probabilidad en Q y podemos hablar del espacio de probabilidad (Ω, Q, P_{B}) .

1-14 <u>Pefinición</u>.- La esperanza de una variable aleatoria X en el especió de probabilidad (Ω,Q,P_B) , se denomina la esperanza condicional de X dado B y se denota por

EBX = XdPB

Pero como $P_B = 0$ en $\{AB^C, A \in A\}$, tenemos: $E_B X = \int_B X dP_B$

y como $P_B = \frac{1}{PB}P$ en $\{AB, A \in Q\}$, llegamos a

$$E_B X = \frac{1}{PB} \int_B X dP$$
.

En particular,

$$PB \cdot E_B I_A = \int_B I_A dP = P(AB)$$

$$P_B A = E_B I_A$$

La esperanza condicional (y probabilidad condicional) adquiere su significado completo cuando se interpreta como valores de funciones de la siguiente manera: El número $E_{\rm B}X$ se asigna ya no a B, sino a cada elemento de B y similarmente, $E_{\rm B}CX$ se asigna a cada elemento de ${\rm B}^{\rm C}$.

Así, considerando el σ -campo $\mathcal{B} = \{ \emptyset, B, B^c, \Omega \}$, queda definida - la variable aleatoria:

$$E_{\mathcal{B}}X = (E^{\mathcal{B}}X)I^{\mathcal{B}} + (E^{\mathcal{B}_{\mathcal{C}}}X)I^{\mathcal{B}_{\mathcal{C}}}$$

Mas general, sea $\{B_j\}$ una partición numerable de Ω y sea B el σ -campo generado por esta partición. Consideremos la función elemental

$$E^{\theta}X = \sum_{j \in J} (E_{B_j}X)I_{B_j}$$
, J numerable, $X \in \mathcal{E}$

donde E es la familia de las variables aleatorias cuya integral existe.

Si algunos de los B_j son nulos, los correspondientes valores $E_{B_j}X$ - están indeterminados. Así, E^BX no está determinada en el evento nulo el cual es la suma de los B_j nulos.

Considerando esta posibilidad y la definición de $E_{B_{\!2\!2}}X$, llegamos a:

1-15 <u>Definición</u> (Constructiva). - La función elemental $E^{\text{B}}X$ definida -- P - c.d. por

 $E_{\mathbf{g}} X = \sum_{i \in I} \left(\frac{bB^i}{I} \right)^{B^i} X P_{\mathbf{b}} I^{B^i}$, $X \in \mathcal{E}$

es la esperanza condicional de X dado B .

Particularizando a indicadores, definimos la función ${\cal B}$ -medible - ${\sf P^BA}={\sf E^BI_A}$, ${\sf A}\in {\sf Q}$ la cual será la probabilidad condicional de A dado ${\sf B}$

En las definiciones anteriores decimos, "dado el σ -campo $\mathfrak B$ " y no "dada la partición $\{B_j\}$ ", ya que $E^{\mathfrak B}X$ determina la esperanza condicional de X dado un evento no nulo arbitrario $B\in \mathfrak B$. Obsérvese que si B es no nulo, existe $K\subset J$ tal que

Así, si $P_BB=PB$ V $B\in B$ y PB>0, la expresión de la derecha vendrá a ser $\int_B (E^BX) dP_B$, mientras que la expresión de la iz -- quierda sabemos que es $\int_B X dP$.

Hemos justificado la terminología, pero además hemos obtenido una propiedad de la esperanza condicional que permite caracterizarla, como veremos enseguida. Nótese que $\mathbf{E}^{\mathbf{g}}\mathbf{X}$ es una variable aleatoria \mathbf{g} -medible.

1-16 <u>Proposición</u>. Si Y es una variable aleatoria \mathscr{B} -medible tal que $\int_{\mathscr{B}} Y dP = \int_{\mathscr{B}} X dP \quad \forall \; B \in \mathscr{B} \; ,$

entonces

$$b[\lambda = E_B x] = 7$$

<u>Pemostración</u>: Si el evento $B=[Y < E^{B}X] \in \mathcal{B}$ fuera de probabilidad positiva se tendría:

Por lo tanto, $P[Y < E^{\otimes}X] = 0$. Similarmente, $P[Y > E^{\otimes}X] = 0.11$.

Esto nos lleva a "redefinir" (ahora descriptivamente) la esperanza condicional respecto a un σ -campo numerable (generado por una partición de Ω a lo mas numerable).

1-17 <u>Definición</u> (Descriptiva).- La esperanza condicional $E^{\Theta}X$ de una variable aleatoria $X \in E$ es la única variable aleatoria B-medible - que satisface la relación

donde $\mathcal B$ es generado por una partición a lo más numerable de Ω . La unicidad es en el sentido de que ^{si}existe otra variable aleatoria $\mathcal B$ - me dible $\mathbf y$ que satisfaga esta relación, entonces,

El siguiente paso es extender la definición de esperanza condicional al caso en que el sub- σ -campo $\mathfrak B$ no necesariamente es el σ -campo generado por una partición numerable de Ω . La definición que clásicamente se extiende es la definición descriptiva (ver (1)). Una -manera de lograr tal extensión es utilizando el teorema de Radon-Niko-dym. Otra posible forma de extender la definición es utilizando el teorema de representación de Riesz para funcionales lineales acotadas en $\Gamma^2(\Omega, \Omega, P)$.

Para finalizar este capítulo extenderemos la definición de esperanza condicional, justificando tal extensión por medio del teorema de Radon-Nikodym.

1-18 <u>Definición</u>. - La espernaza condicional ($E^{\otimes}X$) de $X \in F$ dado B - es una función B -medible definida P -c.d. por la relación

Para justificar la definición, obsérvese que la integral indefinida Ψ de X, es σ -aditiva y P - continua y por lo tanto, su restricción $\Psi_{\mathbf{s}}$ a Θ es σ -aditiva y P - continua. Aplicando el teorema - de Radon-Nikodym extendido (1-12), la función Θ - medible $\mathbf{F}^{\mathbf{S}}$ existe y está definida \mathbf{P} -c.d.

En el caso que $\Psi_{\bf B}$ es σ -finita, aplicamos el teorema de Radon-Ni kodym (1-11) y en este caso, ${\bf E}^{\bf E}{\bf X}$ es finita excepto en un evento nulo ar bitrario perteneciente a ${\bf B}$.

La restricción de $E^{\mathfrak{G}}$ a la familia $I_{\mathfrak{G}}$ de indicadores de eventos es la probabilidad condicional dado \mathfrak{G} y se denota por $P^{\mathfrak{G}}$. En otras palabras, $P^{\mathfrak{G}}$ es una función en \mathfrak{G} cuyos valores son funciones \mathfrak{G} - medibles $P^{\mathfrak{G}}A$ definidas P-c.d. por $P^{\mathfrak{G}}A=E^{\mathfrak{G}}I_{A}$ o directamente por

En este capítulo definiremos esperanza condicional a través del teorema de representación de Riesz para funcionales lineales acotadas en -- (Ω, θ, P) . Demostramos primeramente el teorema, definimos esperanza condicional de una variable aleatoria en (Ω, θ, P) y extendemos la definición al caso general.

2-1 <u>Definición</u>. - Sea (Ω, Ω, μ) un espacio con medida. Definiremos $L^2(\Omega, \Omega, \mu)$ como el espacio de las funciones Ω -medibles X para las cuales.

Si (Ω, Θ, P) está fijo, escribiremos simplemente L^P .

Considerando iguales a dos conjuntos que difieren en un conjunto - P-nulo damos la siguiente definición.

2-2 <u>Definición</u>. - Definimos en $L^p(\Omega, Q, \mu)$ una norma por medio de la -relación $|| \times ||_p = \left[\int | | X|^p d\mu \right]^{\frac{1}{p}}$

5 mars V. O ~ 10 mg 1 0

2-3 <u>Definiciones.</u> - Supóngase $y: \Omega \longrightarrow [0,\infty]$ \otimes -medible. Sea S el conjunto de números reales \otimes tales que

y sea β = inf S. Puesto que

$$\gamma^{-1}(\beta,\infty)=\bigcup_{n=1}^{\infty}\gamma^{-1}(\beta+\frac{1}{n},\infty)$$

y puesto que la unión numerable de conjuntos de medida cero, es de medida cero, $\beta \in S$. A β se le denomina el <u>supremo</u> esencial de γ y se denota β = sup ess γ .

Si X es una función Q-medible, se define II llo por larelación:

 $\mathfrak{C}(\Omega, \mathfrak{A}, \mu)$ denotará el conjunto de las funciones X \mathfrak{A} -medibles tales que

A las funciones $X \in L^{\infty}(\Omega, \Omega, \mu)$ se les denomina <u>esencialmente acota</u> das.

2-4 <u>Proposición</u>. Si μ es una medida finita, entonces: $\mu \to \mu$ $\mu \to \mu$ $\mu \to \mu$

Demostración: Si $1 \le P \le 9 < \infty$ entonces:

Integarando ambos lados de la desigualdad y por la monotonía de la integral se tiene:

[IXIgh = ho + [IXIgh

de donde se deduce que si $X \in L^{\infty}$ entonces $X \in L^{\infty}$ Si $X \in L^{\infty}$ entonces,

00> hor (bus on [XI) = [IXI gh

2-5 <u>Pefinición</u>. - Sea E un espacio lineal. Un producto interior o producto escalar denotado (X, Y), es una función definida en el producto -- E x E y con valores en campo de escalares $\mathbb R$ tal que:

i) (αX+βY, Z)=α(X, Z)+β(Y, Z) +α,βεπ y X, Y ε Ε

(x,y)=(y,x)

iii) $X \neq 0 \Rightarrow (x,x) > 0$.

Notese que si E es un espacio con producto interior, E se convierte en un espacio normado definiendo

11×11=(x,x) + X E

2-6 <u>Definición</u>. - Un espacio de Hilbert es un espacio lineal con producto interior que con la norma inducida es de Banach.

Observación. - La norma definida en LP, induce una métrica para el espa-

cio l'definida por

d(x, y)=11 x->11p + x, y∈1p, 1≤p≤∞

2-7 <u>Definición</u>. - Decimos que $\{X_n\}$, $X_n \in L^P$ converge en L^P a X, si $\|X_n - X\|_P \longrightarrow O$ cuando $n \to \infty$ y escribimos $X_n \xrightarrow{LP} X$.

2-8 <u>Definición</u>. - Decimos que $\{X_n\}$, $X_n \in L^P$, converge en la p-ésima media a X $(X_n \xrightarrow{p} X)$ si

En lo sucesivo sólo se considerarán espacios de probabilidad ---- 1Ω , Ω , P) y escribiremos EX en lugar de $\int XdP$.

Nota: La convergaencia en L^P es equivalente a la convergenacia en la -p-Esima media.

2-9 Teorema. - El espacio LP (12, Q, P) es completo.

<u>Demostración</u>: Sea X_n una sucesión de Cauchy en $L^P(\Omega, \Theta, P)$; $|X_m - X_n| \xrightarrow{P} 0$

Por la desigualdad de Markov,

de donde $|X_m - X_n| \xrightarrow{P} 0$ y entonces $X_n \xrightarrow{P} X$

para alguna $X \in L^{P}$.

Existe una subsucesión X_n , tal que:

Puesto que

cuando m, n'->00, se sigue por el lema de Fatou (Royden pág. 226).

$$\int |X_m - X|^p \le \lim_{n \to \infty} \inf \int |X_m - X_n|^p \to 0$$
 coundo $m \to \infty$ por lo tanto, $X_m \xrightarrow{p} X$.

2-10 Teorema. - El espacio L^2 (Ω , Q, P) es un espacio de Hilbert con el producto interior dado por

$$(X, Y) = E(XY)$$

<u>Pemostración</u>: Las propiedades del producto interior, se obtienen directa mente de las propiedades de la integral. Por otro lado, la norma inducida por el producto interior es la norma definida para L^2 , así que por el teorema anterior, L^2 es de Banach.

2-11 <u>Definición</u>. - Una funcional lineal en L^P es una funcion $F\colon L^P \to \mathbb{R}$ tal que

F es <u>continua</u> si F $(X_n) \longrightarrow F(X)$ cuando $X_n \xrightarrow{L_P} X$ F es normada o acotada si existe $M < \infty$, independiente de X_n tal que $|F(x)| \le M\|X\|_P$.

La norma de F es el número dado por la relación

2-12 <u>Definición</u>. - En un espacio lineal H con producto interior, dos vectores X, Y son ortogonales si $\{X, Y\} = 0$.

Para todo subconjunto M de H, el conjunto M^{\perp} de vectores \bigvee que son ortogonales a todos los vectores $X \in M$ es el suplemento ortogonal de M.

2-13 <u>Teorema</u>. - Sea H un espacio de Hilbert, M un subespacio vectorial -- completo (de Hilbert). Para cada $X \in H$, existe un punto y sólo uno ---- $Y = P_M(X)$ tal que

$$11 \times - \times 11 = 9(\times, M).$$

El punto $Y = P_{\mathbf{M}}(X)$ es el único punto $Z \in M$ tal que X - Z es ortogonal a M. La aplicación $X \longrightarrow P_{\mathbf{M}}(X)$ de H sobre M, es lineal, continua y de norma 1 si $M \neq \{0\}$; su núcleo $M' = P_{\mathbf{M}}(0)$ es el subespacio ortogonal a M.

<u>Demostración</u>: Sea $\alpha=d(x,M)$: por definición, existe una sucesión $\{Y_n\}$ de puntos de M tal que

demostraremos que $\{Y_n\}$ es una sucesión de Cauchy.

Aplicamos la propiedad del paralelogramo (válida para todo espacio con producto interior):

para el caso $u=X-Y_n$, $v=X-Y_m$ y obtenemos:

$$|| \lambda^{m} - \lambda^{n} ||_{5} = 5(|| \times - \lambda^{m} ||_{5} + || \times - \lambda^{n} ||_{5}) - 4|| \times - \frac{5}{7}(\lambda^{m} + \lambda^{n}) ||_{5}$$

Pero $\frac{1}{2}(Y_m-Y_n)\in M$ de donde $\|X-\frac{1}{2}(Y_m-Y_n)\|^2\geqslant d^2$ Luego, si N es tal que para $n\geqslant N$, $\|X-Y_n\|^2\leq d^2+\epsilon$ se tiene,

Por lo tanto, $\{Y_m\}$ es de Cauchy y como M es completo, $\{Y_m\}$ converge a $Y \in M$ para el cual

Ahora supóngase que $Y' \in M$ es tal que $\|X-Y'\| = d(X,M)$ Aplicando la propiedad del paralelogramo al caso

obtenemos:

y puesto que

es decir y = y'.

Sea Ahora, Z ≠ 0 un punto cualquiera de M. Tenemos:

Aplicando las propiedades del producto interior obtenemos

Si $(X - Y, Z) \neq 0$, llegariamos a una contradicción escogiendo convenientemente a λ . En consecuencia,

$$(X - Y, Z) \stackrel{\checkmark}{=} 0$$

de donde X-Y es ortogonal a M. Sea $Y'\in M$ tal que X-Y' es ortogonal a M; entonces para $Z\neq 0$ en M se tiene por el teorema de Pitágoras:

$$|| \times - (\lambda_i + \Sigma) ||_S = || \times - \lambda_i ||_S + || S ||_S$$

y esto demuestra que Y=Y' en virtud de la caracterización de Y. Esta áltima caracterización de $Y=P_{\mathbf{m}}(X)$ demuestra que $P_{\mathbf{m}}$ es lineal, pues si X-Y y X'-Y' son ortogonales a M, entonces $\lambda X-\lambda Y$ es ortogonal a M y también lo es

$$(x+x')-(y+y')=(x-y)+(x'-y')$$
.

En virtud del teorema de Pitágoras, se tiene

lo que prueba que $P_{\mathbf{m}}(X) \leq \|X\|$ y por lo tanto $P_{\mathbf{m}}$ es continua y tiene norma ≤ 1 (ver Dieudonné pag), pero por ser $P_{\mathbf{m}}(X) = X$ para $X \in M$, se tiene $\|P_{\mathbf{m}}\| = 1$ si M no se reduce a 0.

La definición de P_M implica que $M' = P_M^{-1}(0)$ está formado por losvectores X ortogonales a M. Además, por ser

$$X = P_{\mu}(x) + (x - P_{\mu}(x))$$
 y $x - P_{\mu}(x) \in M'$

se tiene : H = M + M'.

Finalmente, si $X \in H$ es ortogonal a M' se tiene en particular $(X, X - P_M(X)) = 0$,

pero también se tiene

$$(P_{M}(x), X - P_{M}(x)) = 0$$

por lo tanto,

$$\|X - P_M(x)\|^2 = 0$$
, es decir, $X = P_M(x) \in M$.//

Nota. - A la aplicación lineal P_M se le denomina la proyección ortogonal de H sobre M.

2-14 Corolario. - Si $M \neq H$, existe $Y \in H$, $Y \neq 0$ tal que $Y \perp M$.

Demostración: Sea $X \in (H - M)$ y sea

$$y = x - P_m(x) \neq 0. //$$

2-15 Teorema. - Sea F una funcional lineal continua definida en un espacio de Hilbert H. Entonces existe $Y \in H$ única tal que

$$F(X) = (X, Y)$$
.

<u>Demostración</u>: Si $F(X) = 0 \forall X \in H$, tomamos Y = 0. De otra manera, definimos

 $M = \left\{ X \mid F(X) = 0 \right\}$

La linealidad de F demuestra que M es un subespacio y la continuidad de F muestra que M es completo.

Puesto que $F(X) \neq 0$ para algún $X \in H$, el corolario 2-14 asegura que M -contiene puntos distintos de cero. Por lo tanto, existe $Z \in M^{\perp}$ con $\|Z\| = 1$ Sea M = F(X)Z - F(Z)X.

Puesto que

tenemos que MEM y en consecuencia

$$O=(x,z)=F(x)(z,z)-F(z)(x,z)$$

$$\Rightarrow F(x)=F(x)(z,z)=F(z)(x,z).$$

Hacemos $Y = \alpha Z$ con $\alpha = F(Z)$.

Para probar la unicidad: Si $(X,Y) = (X,Y') \quad \forall \quad X \in H$, sea Z = Y - Y';

Entonces $(X,Z)=0 \forall X \in H$; en particular, (Z,Z)=0 y por lo tanto - Z=0.

2-16 <u>Proposición</u>. - Una funcional lineal en un espacio normado es continua si y sólo si es acotada.

<u>Demostración</u>: Sea F una funcional lineal. Si F es acotada, entonces es - continua puesto que

 $|F(x_n)-F(x)|=|F(x_n-x)| \le M||x_n-x|| \to 0$ wonds $||x_n-x||\to 0$. Si F no es acotada, entonces no es continua puesto que para toda n existe un punto x_n tal que

| F(Xn) |> N(1 Xn 1)

y haciendo

tenemos $|F(y_n)| > 1$ mientras que

$$\|Y_n\| = \frac{1}{n} \rightarrow 0$$
 . //

En base al teorema 2-10 y al teorema 2-15, tenemos el siguiente resultado, que es el teorema de representación de Riesz para funcionales - lineales acotadas en L^2 .

2-17 Teorema Sea F una funcional lineal acotada en $L^2(\Omega,Q,P)$. Existe un elemento único $V \in L^2(\Omega,Q,P)$ tal que

Vamos ahora a aplicar (2-17) para definir la esperanza condicional. Sean $X \in L^2(\Omega, \Theta, P)$, B un sub- σ -campo de Q y $F:L^2(\Omega, B, P) \to \mathbb{R}$

Por la linealidad de la integral, resulta que F es lineal y por la desigualdad de Schwarz,

(F(Z)| ≤ ||X|| || Z||

resulta que F es acotada. Aplicando el teorema 2-17 se sigue que existe $V \in L^2(\Omega, \mathcal{B}, P)$ tal que

$$F(z) = \int (zy)dP + z \in L^{2}(\Omega, B, P),$$

es decir,

En particular, si $Z = I_B$, $B \in \mathbb{R}$, obtenemos:

Sea X positiva (no necesariamente integrable) y sea

$$X_n = min(X, n)$$

Es claro que $X_n \in L^2(\Omega, \Omega, P)$ y $X_n \uparrow X$. Para cada X_n , existe $Y_n \in L^2(\Omega, B, P)$ tal que:

$$\int_{B} X_{n} dP = \int_{B} Y_{n} dP \quad \forall \quad B \in B \quad \forall \quad P(0 \leq Y_{n} \leq Y_{n+1}) = 1$$

Se sigue que existe una variable aleatoria $Y \in L^1(\Omega, B, P)$ tal que -- $P(Y_n \uparrow Y) = 1$ y, aplicando el teorema de la convergencia monótona,

Ahora, en el caso en que $X=X^+-X^-$ es casi integrable, por lo-menos una de las variables aleatorias positivas X^+ o X^- es integrable-y, por lo tanto, al menos una de las variables aleatorias positivas y \mathbf{G} -medibles Y_+ o Y_- tales que

es integrable. En consecuencia, $Y = Y_+ - Y_-$ está definida casi dondequie ra, es \mathbf{B} -medible y ademas,

La siguiente proposición nos demuestra que la función y obtenida an teriormente, es la esperanza condicional con respecto a & de la variable Xde la definición 1-17.

2-18 Proposición. - Una variable aleatoria $oldsymbol{B}$ -medible Y es la esperanza condicional con respecto a $oldsymbol{B}$ de la variable aleatoria X si y sólo si

$$\int (zx)dP = \int (zy)dP$$

Demostración: Si $Y = E^{B}X$, la definición 1-17 nos dice que

siempre que $Z=I_B$, $B\in B$. Por linealidad, se obtiene la igualdad para Z variable aleatoria simple positiva y medible; por el teorema de la --convergencia monótona, se tiene el resultado para el caso en que Z es una variable aleatoria positiva y B-medible.

Observese que, en $L^2(\Omega,Q,P)$, la esperanza condicional no es más que la proyección de $L^2(\Omega,Q,P)$ en su subespacio de Hilbert $L^2(\Omega,B,P)$ Esta propidad permite definir la esperanza condicional en $L^2(\Omega,Q,P)$ - (ver por ejemplo (8)).

Lo anterior se justifica ya que si $Y = P_{L^2(\Omega, B, P)} X$ entonces

a) YEL'(D, B, P)

b)
$$\int (X-Y)ZdP=0 \quad o \quad \int (XZ)dP=\int (YZ)dP \quad \forall \quad Z\in \vec{L}(\Omega,\mathbb{G},P).$$

ESPERANZA CONDICIONAL DADA UNA FUNCION

2-19 <u>Pefinición</u>. - Sea Y una función de (Ω, Ω, P) al espacio medible -- (Ω', Ω') . Pefinimos los σ -campos inducidos por Y en Ω' y Ω , respectivamente, de la siguiente forma: $B'_{\gamma} \subset \Omega'$ es el σ -campo de todos los conjuntos de Ω' cuya imagen inversa bajo Y son eventos $(\in \Omega)$ y B_{γ} es el σ -campo de esos eventos. P_{γ} y P_{γ} , son las probabilidades inducidas - por Y en B_{γ} y B'_{γ} , respectivamente definidas por

PyB=PB, B & By; PyB'=PB si B' & B' y B=y"(B').

Si $\mathbf{B} = \mathbf{B}_{\mathbf{y}}$, escribiremos $\mathbf{E}^{\mathbf{y}}\mathbf{X}$ en lugar de $\mathbf{E}^{\mathbf{x}}\mathbf{X}$ y a $\mathbf{E}^{\mathbf{y}}\mathbf{X}$ la llamaremos la esperanza condicional de X dada Y . Para justificar la terminología, demostraremos que efectivamente, $\mathbf{E}^{\mathbf{y}}\mathbf{X}$ es una función de la función Y. Para ello usaremos el siguiente resultado.

2-20 <u>Proposición</u>. - Para toda función numérica medible g definida en (Ω') , B'_{y}, P'_{y} , $B'_{y} = \int_{B'} 3(y) dP_{y}$, $B' \in B'_{y}$, B = Y'(B'),

en el sentido que si una de las integrales existe, existe la otra y soniguales.

<u>Demostración</u>: Sea $g = I_A$, $A' \in B'_y$. Tomamos $A = y^-(A')$ y obtenemos $g(y) = I_A$ de donde

$$\int_{B'} I_{A'} dP'_{A} = P'_{A}(A'B') = P_{A}(AB) = \int_{B} I_{A} dP_{A}.$$

Siendo válida para indicadores, la igualdad es válida para funciones gsimples y, por el teorema de la convergencia monótona, para g medible nonegativa. La afirmación se sigue descomponiendo la función g medible en su parte positiva y en su parte negativa.

2-21 Proposición. - La esperanza condicional de $X \in \mathbb{F}$ dada Y es una función de la función Y.

Demostración: Si φ es la integral indefinida de X y φ' en Θ'_{γ} está definida por

$$\Psi'(B') = \Psi(B)$$
, $B' \in \mathcal{B}'_{y}$, $B = y^{-1}(B')$

entonces Ψ' es Γ -aditiva y P_y' -continua. Aplicamos el teorema de Radon-Nikodym extendido (1-12) y definimos una función medible g en (Ω', P_y') por

$$\int_{3}^{B_{i}} 34 k_{i}^{\lambda} = A_{i}(B_{i}) = \int_{X}^{B} 76$$

Puesto que

$$\int_{X}^{B} X db = \int_{(E_{A}X)}^{B} f_{b} db ,$$

se sigue aplicando 2-20 que

Por lo tanto, las integrales indefinidas de las funciones \mathcal{R}_7 medibles g(Y) y E^YX son las mismas, y así, la afirmación está probada. //

En los capítulos anteriores, definimos la esperanza condicional en su forma más general auxiliándonos de dos resultados "ajenos" a la teoría de probabilidad: El teorema de Radon-Nikodym y el teorema de representación de Riesz.

En ambos casos, la definición obtenida es puramente descriptiva: Para toda $X \in E$ existe una función B-medible E^{B} Xtal que

$$\int_{\mathcal{B}} (E^{\otimes}X) dP = \int_{\mathcal{B}} X dP \qquad \forall \quad \mathcal{B} \in \mathcal{B} \qquad ----- 3-1$$

Esta definición se obtiene como una generalización de la definición de esperanza condicional en el caso elemental:

$$E^{\mathbf{g}}X = \sum_{j} (E_{\mathbf{g}_{j}}X) \mathbf{1}_{\mathbf{g}_{j}}$$
 ----- 3-2

donde $\{B_j\}$ es una partición a lo más numerable de Ω que genera a B.

Consideremos la definición de la esperanza condicional como se - obtuvo en el capítulo I (la esperanza condicional es una derivada de-Radon-Nikodym). No es fácil "ver" la relación que existe entre la definición en el caso elemental (3-2) y la definición en el caso mas -- general (3-1)

Para esclarecer el enlace que existe entre (3-1) y (3-2) enuncia_ remos y demostraremos el teorema de Radon-Nikodym como un teorema deprobabilidad, obteniendo de esta manera una definición constructiva de la esperanza condicionalen su forma más general.

Versión Probabilista del Teorema de Radon-Nikodym.

Sea (Ω, Q, P) un espacio de probabilidad, B un sub- σ -campo de Q y V una función Q-medible de Ω a $[-\infty, \infty]$ cuya integral exis-

te. Considérese el espacio de probabilidad $(\Omega, \mathcal{B}, \mathcal{P}_{\mathcal{B}})$ donde $\mathcal{P}_{\mathcal{B}}$ es la restricción de P a \mathcal{B} y la función conjuntista ψ definida por

Recuerdese que y es σ -aditiva y P_{σ} -continua.

TEOREMA. - Existe una sucesión creciente $\{B_n; n=1,2,\ldots\}$ de sub- σ -campos de B, cada uno generado por una partición numerable $\{B_{nk}; k=0,1,2,\ldots\}$ de Ω tal que la sucesión $\{E^{B_{nk}}\}$ tiene un límite puntual F, satisfaciendo para todo $B \in B$,

$$\int_{\mathcal{B}} (E^{g_n} Y) dP_g \to \int_{\mathcal{B}} F dP_g \quad y \quad \int_{\mathcal{B}} (E^{g_n} Y) dP_g \to \int_{\mathcal{B}} Y dP \equiv \varphi(\mathcal{B}) \ .$$

Así, $E^{B}Y$ existe y es el límite de esperanzas condicionales definidas constructivamente.

<u>Demostración</u>: Probaremos el teorema para Y no negativas, puesto que en elcaso general podemos tomar $E^B Y = E^B Y^+ - E^B Y^-$.

Sea la familia de medidas con signo

Por el teorema de descomposición de Hahn, existe un conjunto $A_{\infty} \in \mathcal{B}$ talque para cualquier $B \in \mathcal{B}$,

$$B \subset A_{\alpha} \Rightarrow (\Psi - \alpha P_{\alpha})(B) \ge 0$$

 $B \subset A_{\alpha}^{\zeta} \Rightarrow (\Psi - \alpha P_{\alpha})(B) \le 0$

o equivalentemente,

$$B \subset A_{\alpha} \Rightarrow \int_{B} VdP \geqslant \alpha P(B)$$

 $B \subset A_{\alpha}^{c} \Rightarrow \int_{B} VdP \leq \alpha P(B)$.

Por supuesto, los A_{∞} 's no son únicos (ver teorema 1-9). Sin embargo, para una colección numerable de ∞ 's (usaremos el conjunto $\left\{\frac{k}{2^n}; k, n=0,1,2,\dots\right\}$) podemos escoger los A_{∞} de tal manera que sean crecientes. Em-

pezamos con cualquier sucesión {A*} y definimos

$$A_{u} = A_{u}^{*} - \bigcup_{\mathsf{V} < \omega} (A_{w}^{*} - A_{v}^{*})$$

Esto es válido porque $P(A_W^* - A_V^*) = 0$ si w > v. Además, puesto que $Y \geqslant 0$, podemos tomar $A_o = \Omega$. Sea A_{∞} el límite (intersección) de todas nues tras A_u ($P(A_{\infty}) = 0$ si Y es integrable) y nótese que A_{∞} es también el límite de cada subsucesión

$$\left\{ A_{\frac{R}{2N}}; k=0,1,\ldots \right\}.$$

Así, para cada n, la sucesión

es una partición B-medible de Ω .

Ahora, las esperanzas condicionales de V dado el σ -campo Θ_n , donde Θ_n es (abusando de la notación) el σ -campo generado por la partición Θ_n , están dadas por:

donde

El hecho clave es que para cualquier B∈B,

$$k2^{-n} \leq \int_{BBn_R} \frac{VdP}{P(BBn_R)} \leq (k+1)2^{-n}$$

puesto que

Siendo las B_n encajadas, concluimos que $\{E^{B_ny}\}$ converge puntualmente a una función B-medible F satisfaciendo para cada n y k,

$$k2^{-n} \le F \le (k+1)2^{-n}$$
 en BnR.

Si P(BA00) > 0,

$$\int_{\mathcal{B}} (E^{\theta_n} Y) dP_{\theta} = \infty = \int_{\mathcal{B}} F dP = \int_{\mathcal{B}} Y dP ,$$

mientras que si P(BA,) = 0, se verifica que

$$\left|\int_{B} (E^{\theta_{n}} Y - F) dP_{\theta} \right| \leq \sum_{R} \int_{BB_{nR}} |E^{\theta_{n}} Y - F| dP_{\theta} =$$

$$\sum_{R} \int_{BB_{nR}} |E_{BB_{nR}} Y - F| dP_{\theta} \leq \sum_{R} 2^{-n} P(BB_{nR}) \leq 2^{-n}$$

$$\left|\int_{B} (E^{\theta_{n}} Y - Y) dP\right| = \left|\sum_{R} \left[\int_{B_{nR}} \frac{YdP}{P(B_{nR})} \right] P(BB_{nR}) - \sum_{R} \int_{BB_{nR}} |YdP| \leq$$

$$\sum_{R} 2^{-n} P(BB_{nR}) \leq 2^{-n} . //$$

Como un caso particular, consideremos B=T(X) donde X es una variable aleatoria y $T(X)=\left\{X^{-1}(A):A \text{ es un Boreliano}\right\}.$

Sea $B_{n_k}=X^{-1}\left[\frac{k}{m},\frac{k+1}{n}\right]$ y sea Θ_n el σ -campo generado por la partición-de Ω $\left\{B_{n_k};k=0,1,\ldots\right\}$ Definamos

$$X_{N} = \sum_{k} \frac{n}{k} \left[\frac{k}{k} < x < \frac{k+1}{2} \right]$$

La esperanza condicional de una variable aleatoria V dado X_n , $E(V|X_n)$, es el caso elemental ya que $\sigma(X_n)$ está generado por una partición-numerable de Ω y así, obtenemos la definición constructiva:

$$E(Y|X) = \lim_{n \to \infty} (Y|X_n)$$

Consideremos el caso especial de probabilidad condicional: Reemplazamos y por $I_{[Y \in B]}$ donde B = s algún conjunto de Borel y E(Y|X) se reemplaza por $P(Y \in B|X)$. Para el caso particular $P(Y \in B|X = x)$ (El valor común de $P(Y \in B|X)$ en el evento $X^{-1}\{x\}$), tenemos las tres definiciones siguientes:

$$P(Y \in B \mid X = x) = \lim_{n \to \infty} P(Y \in B \mid X_n = x_n)$$
, ----(3-3)

donde las X_n son funciones elementales que convergen a X c.d. y x_n es el valor de X_n cuando X=x. Por ejemplo,

$$X_{n} = \sum_{R} \left(\frac{R}{n}\right) \left[\frac{R}{n} \leq X < \frac{R+1}{n}\right]$$

$$x_{N} = \sum_{\mathbf{R}} \left(\frac{\mathbf{R}}{n} \right) \prod_{\left[\frac{\mathbf{R}}{n} \leq \infty < \frac{\mathbf{R}+1}{n} \right]}$$

Otra posible definición es:

$$P(Y \in B \mid X = x) = \lim_{h \to 0} P(Y \in B \mid x \le X \le x + h)$$
 ----(3-4)

La tercera definición se aplica al caso en que la distribución conjunta de X y Y es absolutamente continua con respecto a la medida de Lebesgue, es decir, para alguna densidad F,

$$P(X \in A, Y \in B) = \iint_{A \times B} F(x, y) dxdy$$

para cada rectángulo de Borel A×B. La definición es:

$$P(Y \in B \mid X = x) = \frac{\int_{B} F(x, y) dy}{\int_{\infty}^{\infty} F(x, y) dy} \qquad -----(3-5)$$

Para justificar la tercera definición:

=
$$\lim_{h\to 0} \frac{\int_{x}^{x+h} \left(\int_{B} F(u,y)dy\right) d\mu}{\int_{x}^{x+h} \left(\int_{-\infty}^{\infty} F(u,y)dy\right) d\mu} =$$

Si $\int_{B} F(u,y)dy$ es continua en u cuando u=x y $F_{X}(u)=\int_{-\infty}^{\infty} F(u,y)dy$ es continua en u=x obtenemos

$$P(Y \in B | X = x) = \int_{B} F(x, y) dy$$

$$F_{X}(x)$$

EJEMPLOS ILUSTRATIVOS

1.- El problema de la mejor elección. Se tiene una baraja de n cartasdistintas (por ejemplo n=52), las cuales están arbitrariamente graduadas. Una persona, extrae las cartas una por una e informa solo una cosa: La carta extraída es o no es"la mejor hasta ahora". Oyendo esto, se
debe decidir inmediatamente si se acepta o no la carta. Se puede escoger
a lo más una carta y se gana si y sólo si la carta escogida es la mejor
de las n cartas.

Para n grande, puede parecer que las oportunidades de ganar son - muy escasas, pero esto no es así como lo demuestra la siguiente solu-ción.

Se escoge un entero k entre 1 y n y se usa la siguiente estrategia: Dejar pasar las k primeras cartas no importa cuales sean. Después tomar la primera carta, la cual es la mejor hasta ahora. Sea B el evento de - "ganar el juego" y para i=1,2,...,n, sea Gi el evento que la mejor de las n cartas es la i-ésima. Nótese que en Gi para i>k se gana si y sólo si la mejor de las primeras i-1 cartas está entre las primeras k. Entonces se tiene que

PR(B) = \(P(B|Gi) P(Gi) = \sum_{\text{R+1} \left\(\frac{k}{k} \right)} P(Gi) = \sum_{\text{R+1} \left\(\frac{k}{k} \right)} \left(\frac{k}{k} \right).

Para $k=\frac{n}{2}$, esta probabilidad es al menos $\frac{1}{4}$, no importa que tan grande sea n. El valor óptimo de k=k(n) satisface

de lo cual concluimos que

$$\frac{k(n)}{n} \longrightarrow e^{-1}$$
, $P_{k(n)}(B) \longrightarrow e^{-1} \approx .36$.

2.- Problema de Diagnostico. Supóngase que una persona puede tener una y sólo una de las enfermedades en el conjunto $\Delta = \{S_0, S_1, \dots \}$ [\$\int_0\$ para 'salud perfecta']. Sea \$\sigma\$ un síntoma (o colección de síntomas). Una persona escogida al azar tendrá la enfermedad \$\int_1\$ con probabilidad \$\mathbb{Q}[\sigma][\sigma

Si Σ es numerable, esta probabilidad está bien definida:

$$P(\delta|\sigma) = \frac{P(\delta\sigma)}{P(\sigma)}$$

donde

Si Σ es no numerable, definimos en el espacio medible $(\Omega, \Omega) = (\Delta \times \Sigma, 2^{\Delta} \times \mathcal{L})$

la medida de probabilidad

identificando P(SO) con P(Sx{O}) y P(O) está dada por:

3.- <u>Problema X-Y</u>. Escogemos aleatoriamente un número Y en $\{0,1\}$, es decir, $P(Y \le y) = y$ si 0 < y < 1. Después escogemos aleatoriamente un número-X en $\{Y,1\}$. Solamente se observa X. Dado su valor, ¿cual es la distribución condicional de Y?

En este caso usaremos la definición (3-5).

Sea la distribución conjunta de X y Y:

con la densidad

$$F(x_{3}y) = \begin{cases} \frac{1}{1-y} & 0 < y < x < 1 \\ 0 & \text{en coalquier otro caso} \end{cases}$$

entonces, para todo $x \in (0,1)$,

$$P(Y \in B \mid X = x) = \int_{B}^{q(y \mid x)dy}$$

donde

$$g(y|x) = \frac{F(x, y)}{\int_0^1 F(x, z)dz}$$

$$= \frac{-1}{(1-y)L_N(1-x)}$$
ocycxcl

=0 en c

en cualquier otro caso.

- 4.- Paradoja de Borel Supóngase que un punto es escogido aleatoriamente en la superficie de la tierra la cual consideramos esférica. Encontrar:
- a) La distribución condicional de la longitud del punto, dado que cae en el ecuador.
- b) La distribución condicional de la latitud del punto, dado que cae en el meridiano de Greenwich. (Kolmogorov (7) presentó una versión de este problema bajo el título: "Explicación de una paradoja de Borel").

Puesto que el punto de la esfera, se escoge de acuerdo a una distribu - ción uniforme simetrica, si-la parte a) tiene respuesta, la parte b) -- tendrá la misma respuesta.

Ahora tenemos la paradoja: Lalongitud ψ y la latitud θ son variables aleatorias perfectamente definidas. La distribución de ψ es de hecho uniforme, mientras que la distribución de θ no lo es (su densidad es proporcional a cos θ , como lo veremos después). Además, θ y ψ son independientes, así que las distribuciones condicionales de cadauna dada la otra, son simplemente sus distribuciones (no condicionales). De esta manera tendremos respuestas a la parte a) y a la parte b), i pero no son las mismas!. Lo anterior nos indica que la respuesta depende de la descomposición: Círculos meridianos con polos comunes en el círculo dado nos lleva a la distribución uniforme, mientras que círculos formados por la intersección de la superficie esférica con los planos paralelos al pla no determinado por el círculo dado (ecuador) lleva a la distribución uniforme.

La distribución de ψ está dada por:

$$P(\Psi_1 \leq \Psi \leq \Psi_2) = \frac{\Psi_2 - \Psi_1}{\Pi}$$

mientras que la distribución de
$$\theta$$
 es:
$$P(\theta_1 \leq \theta \leq \theta_2) = \frac{\int_{\theta_1}^{\theta_2} 2\pi R^2 \cos d\theta}{4\pi R^2} = \frac{1}{2} \int_{\theta_1}^{\theta_2} \cos d\theta$$

Para demostrar la independencia:

$$P(\Psi_1 \leq \Psi \leq \Psi_2, \Theta_1 \leq \Theta \leq \Theta_2) = \frac{2\int_{\Theta_1}^{\Theta_2} (\Psi_2 - \Psi_1) R^2 \cos \theta d\Theta}{4\pi R^2} =$$

$$=\frac{2(\Psi_2-\Psi_1)R^2\int_{\theta_1}^{\theta_2}\cos\theta d\theta}{4\pi R^2}=\left(\frac{\Psi_2-\Psi_1}{\pi}\right)\frac{1}{2}\int_{\theta_1}^{\theta_2}\cos\theta d\theta$$

REFERENCIAS

- 1. M. Loeve, Probability Theory Vol. I y II, Springer-Verlag
 New York (1978).
- 2. S.M. Samuels, The Radon-Nikodym as a Theorem in Probability, American Mathematical Monthly (1978) 155-165.
- 3. H.L. Royden, Real Analysis, Macmillan Publishing Co. Inc. -New York (1968).
- 4. J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day Inc. San Francisco (1965) .
- 5. Rudin, Real and Complex Analysis, McGraw-Hill (1974).
- 6. J. Dieudonné, Foundations of Modern Analysis, Academic Press (1962).
- 7. A.N. Kolmogorov, Foundations of the Theory of Probability, Chelsea, New York (1956).
- 8. J. Neveu, Discrete Parameter Martingales, North Holland --Publishing Company, New York (1975).

